Мультивибратор и его применение. Мультивибратор: подробно простым языком Мультивибратор схема принцип работы user login

Мультивибратор это самый простой генератор импульсов, работающий в режиме автогенерации колебаний то есть при подачи напряжения на схему сам начинает генерировать импульсы.

Простейшая схема представлена на рисунке ниже:



мультивибратор схема на транзисторах

Причем емкости конденсаторов C1, C2 всегда подбираются максимально одинаковыми, а номинал базовых сопротивления R2, R3 должен быть выше чем коллекторные. Это важное условие для правильной работы МВ

Как же все таки работает мультивибратор на транзисторах, итак: при включении питания начинают заряжаться емкости C1, C2.

Первый конденсатор по цепочки R1- C1- переход БЭ второго корпус.

Вторая емкость зарядится по цепи R4 - C2 - переход БЭ первого транзистора - корпус.

Так как на транзисторах имеется базовый ток, то они почти открываются. Но так как двух одинаковых транзисторов не бывает, какой то из них откроется чуть раньше своего коллеги.

Предположим, у нас раньше откроется первый транзистор. Открывшись он разрядит емкость С1. Причем разряжаться она будет в обратной полярности, закрывая второй транзистор. Но первый находиться в открытом состоянии только на момент, пока конденсатор С2 не зарядится до уровня напряжения питания. По окончании процесса зарядки С2, Q1 запирается.

Но к этому времени С1 почти разряжен. А это значит, что через него потечет ток, открывающий второй транзистор, который, разрядит емкость С2 и будет оставаться в открытом состоянии до повторной зарядки первого конденсатора. И так из цикла в цикл, пока не отключим питание от схемы.

Как легко заметить время переключения здесь определяется номиналом емкости конденсаторов. Кстати и сопротивление базовых сопротивлений R1, R3 здесь тоже вносит определенный фактор.

Вернемся в первоначальное состояние, когда первый транзистор у нас открыт. В этот момент емкость С1 у нас уже не только успеет разрядится, но и начнет заряжаться в обратной полярности по цепи R2- С1- коллектор-эммитер открытого Q1.

Но сопротивление у R2 достаточно большое и C1 не успевает зарядиться до уровня источника питания, но зато при запирании Q1 она разрядится через базовую цепочку Q2, помогая ему скорее открыться. Это же сопротивление увеличивает и время зарядки первого конденсатора C1. А вот коллекторные сопротивления R1, R4 являются нагрузкой и на частоту генерации импульсов особого влияния не оказывают.

В качестве практического ознакомления предлагаю собрать , в той же статье рассмотрена и конструкция на трех транзисторах.



мультивибратор схема на транзисторах в конструкции новогодней мигалки

Разберемся с работой несимметричного мультивибратора на двух транзисторах на примере простой схемы радиолюбительской самоделки издающей звук подскакивающего металлического шарика. Работает схема следующим образом: по мере разряда емкости С1 громкость ударов снижается. От номинала С1 зависит общая продолжительность звучания, а конденсатор С2 задает длительность пауз. Транзисторы могут быть абсолютно любые p-n-p типа.

Существуют два типа мультивибраторов отечественного микро исполнения - автоколебательные (ГГ) и ждущие (АГ).

Автоколебательные генерируют периодическую последовательность импульсов прямоугольной формы. Их длительность и период следования задаются параметрами внешних элементов сопротивлений и емкостей или уровнем управляющего напряжения.

Отечественными микросхемами автоколебательных МВ, например являются 530ГГ1, К531ГГ1, КМ555ГГ2 более подробную информацию по ним и многим другим вы найдете в , например Якубовский С. В. Цифровые и аналоговые интегральные микросхемы или ИМС и их зарубежные аналоги. Справочник в 12 томах под редакцией Нефедова

Для ждущих МВ длительность генерируемого импульса также задается характеристиками навесных радиокомпонентов, а период следования импульсов задается периодом следования импульсов запуска, поступающих на отдельный вход.

Примеры: К155АГ1 содержит один ждущий мультивибратор, формирующий одиночные импульсы прямоугольной формы с хорошей стабильностью длительности; 133АГ3, К155АГ3, 533АГ3, КМ555АГ3, КР1533АГ3 содержит два ждущих МВ, формирующих одиночные импульсы напряжения прямоугольной формы с хорошей стабильностью; 533АГ4, КМ555АГ4 два ждущих МВ, формирующих одиночные импульсы напряжения прямоугольной формы.

Очень часто в радиолюбительской практике предпочитают не специализированные микросхемы, а собирают его на логических элементах.

Самая простая схема мультивибратора на логических элементах И-НЕ показана на рисунке ниже. Она имеет два состояния: в одном состоянии DD1.1 заперт, а DD1.2 открыт, в другом - все обстоит противоположным образом.

Например, если DD1.1 закрыт, DD1.2 открыт, тогда емкость С2 заряжается выходным током DD1.1, идущим через сопротивление R2. Напряжение на входе DD1.2 положительно. Оно поддерживает DD1.2 в открытом состоянии. По мере заряда емкости С2 снижается ток заряда и падает напряжение на R2. В момент достижения порогового уровня начинает запираться DD1.2 и возрастать его потенциал на выходе. Рост этого напряжения передается через С1 на выход DD1.1, последний окрывается, и развивается обратный процесс, завершающийся полным запиранием DD1.2 и отпиранием DD1.1 - переходом устройства во второе неустойчивое состояние. Теперь будет заряжаться С1 через R1 и выходное сопротивление компонента микросхемы DD1.2, а С2 - через DD1.1. Таким образом наблюдаем типовой автоколебательный процесс.

Еще одна из простых схем, которую можно собрать на логических элементах это генератор импульсов прямоугольной формы. Причем такой генератор будет работать в режиме автогенерации, аналогично транзисторному. На рисунке ниже представлен генератор, построенного на одной логической цифровой отесественной микросборке К155ЛА3


мультивибратор схема на К155ЛА3

Практический пример такой реализации можно посмотреть на странице электроники в конструкции вызывного устройства.

Рассмотрен практический пример реализации работы ждущего МВ на триггере в конструкции оптического выключателя освещения на ИК лучах.

Радиосхемы начинающим радиолюбителям

В этой статье мы приводим несколько устройств, в основу которых положена одна схема - несимметричного мультивибратора на транзисторах разной проводимости.

мигалка

Используя данную схему вы можете собрать прибор с мигающим светом электрической лампочки (см. рис. 1) и применить его для различных целей. Например, установить на велосипеде для питания лампочки поворота или в модели маяка, сигнальном фонаре, на авто- или судомодели как мигающий фонарь.

Нагрузкой несимметричного мультивибратора, собранного на транзисторах Т1, Т2, служит лампочка Л1. Частота повторения импульсов определяется величиной емкости конденсатора С1 и резисторов R1, R2. Резистор R1 ограничивает максимальную частоту вспышек, а резистором R2 можно плавно менять их частоту. Начинать работу надо с максимальной частоты, которой соответствует верхнее по схеме положение движка резистора R2.

Обратите внимание, устройство питается от батареи 3336Л, которая под нагрузкой дает 3,5 В, а лампочка Л1 применена на напряжение всего 2,5 В. Не перегорит ли она? Нет! Длительность ее свечении очень коротка, и нить не успевает перегреться. Если транзисторы обладают большим коэффициентом усиления, то вместо лампочки 2.5 В x 0.068 А можно применить лампочку 3.5В x 0.16 А. В качестве транзистора Т1 подойдут транзисторы типа МП35-МП38, а Т2 - МП39-МП42.

Метроном

Если в эту же схему вместо лампочки вы установите громкоговоритель, то получите другой прибор - электронный метроном. Он применяется при обучении музыке, для отсчета времени в ходе физических экспериментов и при фотопечати.

Если немного изменить схему - уменьшить емкость конденсатора С1 и ввести резистор R3, то увеличится длительность импульса генератора. Звук усилится (рис. 2). Этот прибор может выполнять роль квартирного звонка, звукового сигнала модели или детского педального автомобиля. (В последнем случае напряжение надо увеличить до 9 В.) А может быть использован и для обучения азбуке Морзе. Только тогда вместо кнопки Кн1 надо поставить телеграфный ключ. Тон звука подбирается конденсатором С1 и резистором R2. Чем больше R3, тем громче звук генератора. Однако если его величина будет больше одного килоома, то колебания в генераторе могут и не возникнуть.

В генераторе применены такие же транзисторы, как и в предыдущей схеме, а в качестве громкоговорителя - наушники или головка с сопротивлением катушки от 5 до 65 Ом.

Индикатор влажности

Несимметричный мультивибратор на транзисторах разной проводимости обладает интересным свойством: при работе оба транзистора одновременно или открыты или заперты. Ток, потребляемый запертыми транзисторами, очень мал. Это позволяет создавать экономичные индикаторы изменения неэлектрических величин, например индикаторы влажности. Принципиальная схема такого индикатора приведена на рисунке 3. Как видно из схемы, генератор постоянно подключен к источнику питания, но не работает, поскольку оба транзистора заперты. Уменьшает потребляемый ток и резистор R4. К гнездам Г1, Г2 подключен датчик влажности - две тонкие облуженные проволоки длиной по 1,5 см. Они пришиты к материи на расстоянии 3-5 мм друг от друга Сопротивление сухого датчика велико. У влажного оно падает. Транзисторы открываются, генератор начинает работать Чтобы уменьшить, громкость, надо уменьшить напряжение питания или величину резистора R3. Такой индикатор влажности можно применять при уходе за новорожденными детьми.

Индикатор влажности со звуковым и световым сигналом

Если немного расширить схему, то индикатор влажности одновременно со звуковым сигналом будет подавать световой - начнет зажигаться лампочка Л1. В этом случае, как видно из схемы (рис. 4), в генераторе устанавливаются два несимметричных мультивибратора на транзисторах разной проводимости. Один собран на транзисторах Т1, Т2 и управляется датчиком влажности, подключенным к гнездам Г1, Г2. Нагрузкой этого мультивибратора служит лампа Л1. Напряжение с коллектора Т2 управляет работой второго мультивибратора, собранного на транзисторах Т3, Т4. Он работает как генератор звуковой частоты, и на его выходе включен громкоговоритель Гр1. Если нет необходимости в подаче звукового сигнала, то второй мультивибратор может быть отключен.

Транзисторы, лампа и громкоговоритель в этом индикаторе влажности применены такие же, как и в предыдущих приборах.

Имитатор сирены

Интересные приборы можно построить, используя зависимость частоты несимметричного мультивибратора на транзисторах разной проводимости от тока базы транзистора Т1. Например, генератор, имитирующий звук сирены. Такой прибор можно установить на модели "скорой помощи", пожарной машины, спасательного катера.

Принципиальная схема прибора приведена на рисунке 5. В исходном положении кнопка Кн1 разомкнута. Транзисторы заперты. Генератор не работает. При замыкании кнопки через резистор R4 заряжается конденсатор С2. Транзисторы открываются, и мультивибратор начинает работать. По мере заряда конденсатора С2 растет ток базы транзистора Т1 и увеличивается частота мультивибратора. При размыкании кнопки все повторяется в обратном порядке. Звук сирены имитируется при периодическом замыкании и размыкании кнопки. Скорость нарастания и спада звука подбирается резистором R4 и конденсатором С2. Тон сирены устанавливается резистором R3, а громкость звука - подбором резистора R5. Транзисторы и громкоговоритель выбираются такими же, как и в предыдущих приборах.

Прибор для проверки транзисторов

Учитывая, что в данном мультивибраторе применены транзисторы разной проводимости, вы можете использовать его как прибор для проверки транзисторов методом замены. Принципиальная схема такого прибора приведена на рисунке 6. За основу взята схема звукового генератора, но с равным успехом может быть использован генератор световых импульсов.

Первоначально, замкнув кнопку Кн1, проверьте работоспособность прибора. В зависимости от типа проводимости испытуемый транзистор подключите к гнездам Г1 - Г3 или Г4-Г6. При этом пользуйтесь переключателем П1 или П2. Если при нажатии кнопки в громкоговорителе будет звук, значит, транзистор исправен.

В качестве переключателей П1 и П2 можно взять тумблеры с двумя контактами на переключение. На рисунке переключатели показаны в положении "Контроль". Питается прибор от батареи 3336Л.

Звуковой генератор для проверки усилителей

На основе такого же мультивибратора вы можете построить довольно простой генератор для проверки приемников и усилителей. Его принципиальная схема приведена на рисунке 7. Её отличие от звукового генератора состоит в том, что вместо громкоговорителя на выходе мультивибратора включен 7-ступенчатый регулятор уровня напряжения.

Э. ТАРАСОВ
Рис Ю. ЧЕСНOKOBA
ЮТ Для умелых рук 1979 №8

представляет собой генератор импульсов практически прямоугольной формы, созданный в виде усилительного элемента с цепью положительно-обратной связью. Существуют два типа мультивибраторов.

Первым типом являются автоколебательные мультивибраторы, которые не имеют устойчивого состояния. Различают два типа: симметричный – у него транзисторы одинаковы и также одинаковы параметры симметричных элементов. В результате этого две части периода колебаний равны между собой, а скважность равна двум. Если же параметры элементов не равны, то это уже будет несимметричный мультивибратор.

Второй тип это ждущие мультивибраторы, которые обладают состоянием устойчивого равновесия и нередко их именуют еще одновибратором. Применение мультивибратора в различных радиолюбительских устройствах довольно распространено.

Описание работы мультивибратора на транзисторах

Принцип работы проанализируем на примере следующей схемы.

Легко заметить, что она практически копирует принципиальную схему симметричного триггера. Различие только в том, что связи между блоками переключения, как прямая, так и обратная, осуществлены по переменному току, а не по постоянному. Это кардинально изменяет особенности устройства, так как в сравнении с симметричным триггером у схемы мультивибратора нет стабильных состояний равновесия, в которых он мог бы находиться продолжительное время.

Взамен этого имеются два состояния квазиустойчивого равновесия, благодаря чему устройство находится в каждом из них строго определенное время. Каждый такой промежуток времени определяется переходными процессами, происходящими в схеме. Функционирование устройства заключается к постоянной смене данных состояний, что сопровождается появлением на выходе напряжения, очень напоминающее по форме прямоугольное.

По сути своей симметричный мультивибратор представляет собой двухкаскадный усилитель, причем схема построена, так что выход первого каскада соединен с входом второго. Вследствие этого после подачи питания на схему, обязательно получается, так что один из открыт, а другой находится в закрытом состоянии.

Допустим, что транзистор VT1 открыт и находится в состоянии насыщения током, идущим через резистор R3. Транзистор VT2, как уже было сказано выше, закрыт. Теперь в схеме происходят процессы, связанные с перезарядом конденсаторов C1 и C2. Первоначально конденсатор C2 абсолютно разряжен и вслед за насыщением VT1 происходит постепенная зарядка его через резистор R4.

Поскольку конденсатор C2 шунтирует коллектор-эммитерный переход транзистора VT2 через эммитерный переход транзистора VT1, то скорость его заряда определяет скорость изменения напряжения на коллекторе VT2. После заряда C2 транзистор VT2 закрывается. Продолжительность этого процесса (длительность фронта напряжения коллектора) можно вычислить по формуле:

t1a = 2,3*R1*C1

Также в работе схемы протекает и второй процесс, связанный с разрядом ранее заряженного конденсатора C1. Его разряд происходит через транзистор VT1, резистор R2 и источник питания. По мере разряда конденсатора на базе VT1 появляется положительный потенциал, и он начинает открываться. Данный процесс заканчивается после полного разряда C1. Длительность этого процесса (импульса) равна:

t2a = 0,7*R2*C1

По прошествии времени t2a транзистор VT1 будет заперт, а транзистор VT2 будет в насыщении. После этого процесс повторится по аналогичной схеме и длительность интервалов следующих процессов можно рассчитать также по формулам:

t1b = 2,3*R4*C2 и t2b = 0,7*R3*C2

Для определения частоты колебаний мультивибратора справедливо следующее выражение:

f = 1/ (t2a+t2b)

Портативный USB осциллограф, 2 канала, 40 МГц....

В данной статье расскажем про мультивибратор, как он работает, способы подключения нагрузки на мультивибратор и расчёт транзисторного симметричного мультивибратора.

Мультивибратор — это простой генератор прямоугольных импульсов, который работает в режиме автогенератора. Для его работы необходимо лишь питание от батареи, или другого источника питания. Рассмотрим самый простой симметричный мультивибратор на транзисторах. Схема его представлена на рисунке. Мультивибратор может быть усложнён в зависимости от необходимых выполняемых функций, но все элементы, представленные на рисунке, являются обязательными, без них мультивибратор работать не будет.

Работа симметричного мультивибратора основана на зарядно-разрядных процессах конденсаторов, образующих совместно с резисторами RC-цепочки.

О том, как работают RC-цепочки, я писал ранее в своей статье Конденсатор , которую вы можете почитать на моём сайте. На просторах интернета если и находишь материал о симметричном мультивибраторе, то он излагается кратко, и не доходчиво. Это обстоятельство не позволяет начинающим радиолюбителям что-либо понять, а только помогает опытным электронщикам что-либо вспомнить. По просьбе одного из посетителей моего сайта я решил исключить этот пробел.

Как работает мультивибратор?

В начальный момент подачи питания конденсаторы С1 и С2 разряжены, поэтому их сопротивление току мало. Малое сопротивление конденсаторов приводит к тому, что происходит «быстрое» открывание транзисторов, вызванное протеканием тока:

— VT2 по пути (показано красным цветом): «+ источника питания > резистор R1 > малое сопротивление разряженного С1 > базово-эмиттерный переход VT2 > — источника питания»;

— VT1 по пути (показано синим цветом): «+ источника питания > резистор R4 > малое сопротивление разряженного С2 > базово-эмиттерный переход VT1 > — источника питания».

Это является «неустановившимся» режимом работы мультивибратора. Длится он в течение очень малого времени, определяемого лишь быстродействием транзисторов. А двух абсолютно одинаковых по параметрам транзисторов, не существует. Какой транзистор откроется быстрее, тот и останется открытым — «победителем». Предположим, что на нашей схеме это оказался VT2. Тогда, через малое сопротивление разряженного конденсатора С2 и малое сопротивление коллекторно-эмиттерного перехода VT2, база транзистора VT1 окажется замкнута на эмиттер VT1. В результате транзистор VT1 будет вынужден закрыться — «стать побеждённым».

Поскольку транзистор VT1 закрыт, происходит «быстрый» заряд конденсатора С1 по пути: «+ источника питания > резистор R1 > малое сопротивление разряженного С1 > базово-эмиттерный переход VT2 > — источника питания». Этот заряд происходит почти до напряжения источника питания.

Одновременно происходит заряд конденсатора С2 током обратной полярности по пути: «+ источника питания > резистор R3 > малое сопротивление разряженного С2 > коллекторно-эмиттерный переход VT2 > — источника питания». Длительность заряда определяется номиналами R3 и С2. Они и определяют время, при котором VT1 находится в закрытом состоянии.

Когда конденсатор С2 зарядится до напряжения приблизительно равным напряжению 0,7-1,0 вольт, его сопротивление увеличится и транзистор VT1 откроется напряжением приложенным по пути: «+ источника питания > резистор R3 > базово-эмиттерный переход VT1 > — источника питания». При этом, напряжение заряженного конденсатора С1, через открытый коллекторно-эмиттерный переход VT1 окажется приложенным к эмиттерно-базовому переходу транзистора VT2 обратной полярностью. В результате VT2 закроется, а ток, который ранее проходил через открытый коллекторно-эмиттерный переход VT2 побежит по цепи: «+ источника питания > резистор R4 > малое сопротивление С2 > базово-эмиттерный переход VT1 > — источника питания». По этой цепи произойдёт быстрый перезаряд конденсатора С2. С этого момента начинается «установившийся» режим автогенерации.

Работа симметричного мультивибратора в «установившемся» режиме генерации

Начинается первый полупериод работы (колебания) мультивибратора.

При открытом транзисторе VT1 и закрытом VT2, как я только что написал, происходит быстрый перезаряд конденсатора С2 (от напряжения 0,7…1,0 вольта одной полярности, до напряжения источника питания противоположной полярности) по цепи: «+ источника питания > резистор R4 > малое сопротивление С2 > базово-эмиттерный переход VT1 > — источника питания». Кроме того, происходит медленный перезаряд конденсатора С1 (от напряжения источника питания одной полярности, до напряжения 0,7…1,0 вольта противоположной полярности) по цепи: «+ источника питания > резистор R2 > правая обкладка С1 >левая обкладка С1 > коллекторно-эмиттерный переход транзистора VT1 > — -источника питания».

Когда, в результате перезаряда С1, напряжение на базе VT2 достигнет значения +0,6 вольта относительно эмиттера VT2, транзистор откроется. Поэтому, напряжение заряженного конденсатора С2, через открытый коллекторно-эмиттерный переход VT2 окажется приложенным к эмиттерно-базовому переходу транзистора VT1 обратной полярностью. VT1 закроется.

Начинается второй полупериод работы (колебания) мультивибратора.

При открытом транзисторе VT2 и закрытом VT1 происходит быстрый перезаряд конденсатора С1 (от напряжения 0,7…1,0 вольта одной полярности, до напряжения источника питания противоположной полярности) по цепи: «+ источника питания > резистор R1 > малое сопротивление С1 > базо-эмиттерный переход VT2 > — источника питания». Кроме того, происходит медленный перезаряд конденсатора С2 (от напряжения источника питания одной полярности, до напряжения 0,7…1,0 вольта противоположной полярности) по цепи: «правая обкладка С2 > коллекторно-эмиттерный переход транзистора VT2 > — источника питания > + источника питания > резистор R3 > левая обкладка С2». Когда напряжение на базе VT1 достигнет значения +0,6 вольта относительно эмиттера VT1, транзистор откроется. Поэтому, напряжение заряженного конденсатора С1, через открытый коллекторно-эмиттерный переход VT1 окажется приложенным к эмиттерно-базовому переходу транзистора VT2 обратной полярностью. VT2 закроется. На этом, второй полупериод колебания мультивибратора заканчивается, и снова начинается первый полупериод.

Процесс повторяется до момента отключения мультивибратора от источника питания.

Способы подключения нагрузки к симметричному мультивибратору

Прямоугольные импульсы снимаются с двух точек симметричного мультивибратора – коллекторов транзисторов. Когда на одном коллекторе присутствует «высокий» потенциал, то на другом коллекторе – «низкий» потенциал (он отсутствует), и наоборот – когда на одном выходе «низкий» потенциал, то на другом — «высокий». Это наглядно показано на временном графике, изображённом ниже.

Нагрузка мультивибратора должна подключаться параллельно одному из коллекторных резисторов, но ни в коем случае не параллельно транзисторному переходу коллектор-эмиттер. Нельзя шунтировать транзистор нагрузкой. Если это условие не выполнять, то как минимум — изменится длительность импульсов, а как максимум – мультивибратор не будет работать. На рисунке ниже показано, как подключить нагрузку правильно, а как не надо это делать.

Для того, чтобы нагрузка не влияла на сам мультивибратор, она должна иметь достаточное входное сопротивление. Для этого обычно применяют буферные транзисторные каскады.

На примере показано подключение низкоомной динамической головки к мультивибратору . Добавочный резистор повышает входное сопротивление буферного каскада, и тем самым исключает влияние буферного каскада на транзистор мультивибратора. Его значение должно не менее, чем в 10 раз превышать значение коллекторного резистора. Подключение двух транзисторов по схеме «составного транзистора» значительно усиливает выходной ток. При этом, правильным является подключение базово-эмиттерной цепи буферного каскада параллельно коллекторному резистору мультивибратора, а не параллельно коллекторно-эмиттерному переходу транзистора мультивибратора.

Для подключения к мультивибратору высокоомной динамической головки буферный каскад не нужен. Головка подключается вместо одного из коллекторных резисторов. Должно выполняться единственное условие – ток, идущий через динамическую головку не должен превышать максимальный ток коллектора транзистора.

Если вы хотите подключить к мультивибратору обычные светодиоды – сделать «мигалку», то для этого буферные каскады не требуются. Их можно подключить последовательно с коллекторными резисторами. Связано это с тем, что ток светодиода мал, и падение напряжения на нём во время работы не более одного вольта. Поэтому они не оказывают никакого влияния на работу мультивибратора. Правда это не относится к сверхярким светодиодам, у которых и рабочий ток выше, и падение напряжения может быть от 3,5 до 10 вольт. Но в этом случае есть выход – увеличить напряжение питания и использовать транзисторы с большой мощностью, обеспечивающей достаточный ток коллектора.

Обратите внимание, что оксидные (электролитические) конденсаторы подключаются плюсами к коллекторам транзисторов. Связано это с тем, что на базах биполярных транзисторов напряжение не поднимается выше 0,7 вольта относительно эмиттера, а в нашем случае эмиттеры – это минус питания. А вот на коллекторах транзисторов напряжение изменяется почти от нуля, до напряжения источника питания. Оксидные конденсаторы не способны выполнять свою функцию при их подключении обратной полярностью. Естественно, если вы будете применять транзисторы другой структуры (не N-P-N, a P-N-P структуры), то кроме изменения полярности источника питания, необходимо развернуть светодиоды катодами «вверх по схеме», а конденсаторы – плюсами к базам транзисторов.

Разберёмся теперь, какие параметры элементов мультивибратора задают выходные токи и частоту генерации мультивибратора?

На что влияют номиналы коллекторных резисторов? Я встречал в некоторых бездарных интернетовских статьях, что номиналы коллекторных резисторов незначительно, но влияют на частоту мультивибратора. Всё это полная чушь! При правильном расчёте мультивибратора, отклонение значений этих резисторов более чем в пять раз от расчётного, не изменит частоты мультивибратора. Главное, чтобы их сопротивление было меньше базовых резисторов, потому, что коллекторные резисторы обеспечивают быстрый заряд конденсаторов. Но зато, номиналы коллекторных резисторов являются главными для расчёта потребляемой мощности от источника питания, значение которой не должно превышать мощность транзисторов. Если разобраться, то при правильном подключении они даже на выходную мощность мультивибратора прямого влияния не оказывают. А вот длительность между переключениями (частота мультивибратора) определяется «медленным» перезарядом конденсаторов. Время перезаряда определяется номиналами RC цепочек – базовых резисторов и конденсаторов (R2C1 и R3C2).

Мультивибратор, хоть и называется симметричным, это относится только к схемотехнике его построения, а вырабатывать он может как симметричные, так и не симметричные по длительности выходные импульсы. Длительность импульса (высокого уровня) на коллекторе VT1 определяется номиналами R3 и C2, а длительность импульса (высокого уровня) на коллекторе VT2 определяется номиналами R2 и C1.

Длительность перезаряда конденсаторов определяется простой формулой, где Тау – длительность импульса в секундах, R – сопротивление резистора в Омах, С – ёмкость конденсатора в Фарадах:

Таким образом, если вы уже не забыли написанное в этой статье на пару абзацев ранее:

При равенстве R2=R3 и С1=С2 , на выходах мультивибратора будет «меандр» — прямоугольные импульсы с длительностью равной паузам между импульсами, который вы видите на рисунке.

Полный период колебания мультивибратора – T равен сумме длительностей импульса и паузы:

Частота колебаний F (Гц) связана с периодом Т (сек) через соотношение:

Как правило, в интернете если и есть какие либо расчёты радиоцепей, то они скудные. Поэтому произведём расчёт элементов симметричного мультивибратора на примере .

Как и любые транзисторные каскады, расчёт необходимо вести с конца — выхода. А на выходе у нас стоит буферный каскад, потом стоят коллекторные резисторы. Коллекторные резисторы R1 и R4 выполняют функцию нагрузки транзисторов. На частоту генерации коллекторные резисторы никакого влияния не оказывают. Они рассчитываются исходя из параметров выбранных транзисторов. Таким образом, сначала рассчитываем коллекторные резисторы, потом базовые резисторы, потом конденсаторы, а затем и буферный каскад.

Порядок и пример расчёта транзисторного симметричного мультивибратора

Исходные данные:

Питающее напряжение Uи.п. = 12 В .

Необходимая частота мультивибратора F = 0,2 Гц (Т = 5 секунд) , причём длительность импульса равна 1 (одной) секунде.

В качестве нагрузки используется автомобильная лампочка накаливания на 12 вольт, 15 ватт .

Как вы догадались, мы будем рассчитывать «мигалку», которая будет мигать один раз за пять секунд, а длительность свечения – 1 секунда.

Выбираем транзисторы для мультивибратора. Например, у нас имеются самые распространенные в Советские времена транзисторы КТ315Г .

Для них: Pmax=150 мВт; Imax=150 мА; h21>50 .

Транзисторы для буферного каскада выбирают исходя из тока нагрузки.

Для того, чтобы не изображать схему дважды, я уже подписал номиналы элементов на схеме. Их расчёт приводится далее в Решении.

Решение:

1. Прежде всего, необходимо понимать, что работа транзистора при больших токах в ключевом режиме наиболее безопасна для самого транзистора, чем работа в усилительном режиме. Поэтому расчёт мощности для переходного состояния в моменты прохождения переменного сигнала, через рабочую точку «В» статического режима транзистора — перехода из открытого состояния в закрытое и обратно проводить нет необходимости. Для импульсных схем, построенных на биполярных транзисторах, обычно рассчитывают мощность для транзисторов, находящихся в открытом состоянии.

Сначала определим максимальную рассеиваемую мощность транзисторов, которая должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике. Но для чего нам загонять мультивибратор в жёсткие рамки больших токов? Да и от повышенной мощности потребление энергии от источника питания будет большим, а пользы мало. Поэтому определив максимальную мощность рассеивания транзисторов, уменьшим её в 3 раза. Дальнейшее снижение рассеиваемой мощности нежелательно потому, что работа мультивибратора на биполярных транзисторах в режиме слабых токов – явление «не устойчивое». Если источник питания используется не только для мультивибратора, либо он не совсем стабильный, будет «плавать» и частота мультивибратора.

Определяем максимальную рассеиваемую мощность:Pрас.max = 0,8 * Pmax = 0,8 * 150мВт = 120мВт

Определяем номинальную рассеиваевую мощность: Pрас.ном. = 120 / 3 = 40мВт

2. Определим ток коллектора в открытом состоянии: Iк0 = Pрас.ном. / Uи.п. = 40мВт / 12В = 3,3мА

Примем его за максимальный ток коллектора.

3. Найдём значение сопротивления и мощности коллекторной нагрузки: Rк.общ=Uи.п./Iк0 = 12В/3,3мА= 3,6 кОм

Выбираем в существующем номинальном ряде резисторы максимально близкие к 3,6 кОм. В номинальном ряде резисторов имеется номинал 3,6 кОм, поэтому предварительно считаем значение коллекторных резисторов R1 и R4 мультивибратора: Rк = R1 = R4 = 3,6 кОм .

Мощность коллекторных резисторов R1 и R4 равна номинальной рассеиваемой мощности транзисторов Pрас.ном. = 40 мВт. Используем резисторы мощностью, превышающей указанную Pрас.ном. — типа МЛТ-0,125.

4. Перейдём к расчёту базовых резисторов R2 и R3 . Их номинал находят исходя из коэффициента усиления транзисторов h21. При этом, для надёжной работы мультивибратора значение сопротивления должно быть в пределах: в 5 раз больше сопротивления коллекторных резисторов, и меньше произведения Rк * h21.В нашем случае Rmin = 3,6 * 5 = 18 кОм, а Rmax = 3,6 * 50 = 180 кОм

Таким образом, значения сопротивлений Rб (R2 и R3) могут находиться в пределах 18…180 кОм. Предварительно выбираем среднее значение = 100 кОм. Но оно не окончательно, так как нам необходимо обеспечить требуемую частоту мультивибратора, а как я писал ранее, частота мультивибратора напрямую зависит от базовых резисторов R2 и R3, а также от ёмкости конденсаторов.

5. Вычислим ёмкости конденсаторов С1 и С2 и при необходимости пересчитаем значения R2 и R3 .

Значения ёмкости конденсатора С1 и сопротивления резистора R2 определяют длительность выходного импульса на коллекторе VT2. Именно во время действия этого импульса наша лампочка должна загораться. А в условии было задана длительность импульса 1 секунда.

определим ёмкость конденсатора: С1 = 1сек / 100кОм = 10 мкФ

Конденсатор, ёмкостью 10 мкФ имеется в номинальном ряде, поэтому он нас устраивает.

Значения ёмкости конденсатора С2 и сопротивления резистора R3 определяют длительность выходного импульса на коллекторе VT1. Именно во время действия этого импульса на коллекторе VT2 действует «пауза» и наша лампочка не должна светиться. А в условии был задан полный период 5 секунд с длительностью импульса 1 секунда. Следовательно, длительность паузы равна 5сек – 1сек = 4 секунды.

Преобразовав формулу длительности перезаряда, мы определим ёмкость конденсатора: С2 = 4сек / 100кОм = 40 мкФ

Конденсатор, ёмкостью 40 мкФ отсутствует в номинальном ряде, поэтому он нас не устраивает, и мы возьмём максимально близкий к нему конденсатор ёмкостью 47 мкФ. Но как вы понимаете, изменится и время «паузы». Чтобы этого не произошло, мы пересчитаем сопротивление резистора R3 исходя из длительности паузы и ёмкости конденсатора С2: R3 = 4сек / 47 мкФ = 85 кОм

По номинальному ряду, ближайшее значение сопротивления резистора равно 82 кОм.

Итак, мы получили номиналы элементов мультивибратора:

R1 = 3,6 кОм, R2 = 100 кОм, R3 = 82 кОм, R4 = 3,6 кОм, С1 = 10 мкФ, С2 = 47 мкФ .

6. Рассчитаем номинал резистора R5 буферного каскада .

Сопротивление добавочного ограничительного резистора R5 для исключения влияния на мультивибратор выбирается не менее чем в 2 раза больше сопротивления коллекторного резистора R4 (а в некоторых случаях и более). Его сопротивление вместе с сопротивлением эмиттерно-базовых переходов VT3 и VT4 в этом случае не будет влиять на параметры мультивибратора.

R5 = R4 * 2 = 3,6 * 2 = 7,2 кОм

По номинальному ряду ближайший резистор равен 7,5 кОм.

При номинале резистора R5 = 7,5 кОм, ток управления буферным каскадом будет равен:

Iупр. = (Uи.п. – Uбэ) / R5 = (12в – 1,2в) / 7,5кОм = 1,44 мА

Кроме того, как я писал ранее, номинал коллекторной нагрузки транзисторов мультивибратора не влияет на его частоту, поэтому если у вас нет такого резистора, то вы можете его заменить на другой «близкий» номинал (5 … 9 кОм). Лучше, если это будет в сторону уменьшения, чтобы не было падения управляющего тока на буферном каскаде. Но учтите, что добавочный резистор является дополнительной нагрузкой транзистора VT2 мультивибратора, поэтому ток, идущий через этот резистор, складывается с током коллекторного резистора R4 и является нагрузочным для транзистора VT2: Iобщ = Iк + Iупр. = 3,3мА + 1,44мА = 4,74мА

Общая нагрузка на коллектор транзистора VT2 в пределах нормы. В случае её превышения максимального тока коллектора указанного по справочнику и умноженное на коэффициент 0,8 , увеличьте сопротивление R4 до достаточного снижения тока нагрузки, либо используйте более мощный транзистор.

7. Нам необходимо обеспечить ток на лампочке Iн = Рн / Uи.п. = 15Вт / 12В = 1,25 А

Но ток управления буферным каскадом равен 1,44мА. Ток мультивибратора необходимо увеличить на значение, равное отношению:

Iн / Iупр. = 1,25А / 0,00144А = 870 раз .

Как это сделать? Для значительного усиления выходного тока используют транзисторные каскады, построенные по схеме «составного транзистора». Первый транзистор обычно маломощный (мы будем использовать КТ361Г), он имеет наибольший коэфициент усиления, а второй должен обеспечивать достаточный ток нагрузки (возьмём не менее распространённый КТ814Б). Тогда их коэффициенты передачи h21 умножаются. Так, у транзистора КТ361Г h21>50, а у транзистора КТ814Б h21=40. А общий коэффициент передачи этих транзисторов, включённых по схеме «составного транзистора»: h21 = 50 * 40 = 2000 . Эта цифра больше, чем 870, поэтому этих транзисторов вполне достаточно для управления лампочкой.

Ну вот, собственно и всё!

Мультивибратор - прибор для создания несинусоидальных колебаний. На выходе получается сигнал любой другой формы, кроме синусоидальной волны. Частота сигнала в мультивибраторе определяется сопротивлением и емкостью, а не индуктивностью и емкостью. Мультивибратор состоит из двух каскадов усилителя, выход каждого каскада подается на вход другого каскада.

Принцип действия мультивибратора

Мультивибратор может создавать волну почти любой формы, в зависимости от двух факторов: сопротивления и емкости каждого из двух каскадов усилителя и от того, откуда в цепи снимается выход.

Например, если сопротивление и емкость двух каскадов равны, один каскад проводит 50% времени и другой каскад проводит 50% времени. Для обсуждения мультивибраторов в этом разделе предполагается, что сопротивление и емкость обоих каскадов равны. Когда эти условия существуют, выходной сигнал является прямоугольной волной.

Бистабильные мультивибраторы (или «флип-флоп») имеют два устойчивых состояния. В устойчивом состоянии один из двух каскадов усилителя находится в состоянии проводимости, а другой каскад не проводит. Для того, чтобы перейти от одного устойчивого состояния к другому, бистабильный мультивибратор должен получить внешний сигнал.

Этот внешний сигнал называется внешним импульсом триггера. Он инициирует переход мультивибратора из одного состояния в другое. Другой триггерный импульс необходим, чтобы перевести цепь обратно в ее исходное состояние. Эти триггерные импульсы называются «запуск» и «перезапуск».

Помимо бистабильного мультивибратора, существуют также моностабильный мультивибратор, который имеет только одно устойчивое состояние и астабильный мультивибратор, который не имеет устойчивого состояния.

Loading...Loading...