Суть двоичной системы. Двоичная система. Как двоичное число записать в виде десятичного

Части статьи мы с вами разбирали двоичную систему счисления. Ну что же, думаю продолжим;-). Что же такое все таки бит? Что же он из себя представляет? Как Вы поняли, бит – это один знак в двоичной системе счисления. С помощью одного бита мы можем зашифровать две информации: ДА или НЕТ . Помните нашего человечка из первой статьи с варежками из мамонта? Его одна рука – это один бит. С помощью этой руки он может показать две информации: ДА или НЕТ. Рука поднята вверх – ДА, рука опущена – НЕТ. Еще раз повторюсь, в электронике за слово “ДА” принимают единичку, за слово “НЕТ” – нолик, то есть ДА=1, НЕТ=0, сигнал есть – 1, сигнала нет – 0.

А сколько же информации можно показать с помощью двух бит? Два бита – это два знака вместе в двоичной системе счисления. Пусть у нашего человечка обе руки свободны. Какие комбинации рук он может применить?

1)Подняты сразу две руки

2) Поднята правая рука, левая опущена

3) Поднята левая рука, правая опущена

4) Опущены обе руки

Кто придумает еще комбинацию, сразу же сделаю админом “Практической электроники” пожизненно:-). Больше комбинаций НЕТ! Это значит, что с помощью двух рук (двух битов) мы можем закодить 4 информации. Помните еще пример с первой статьи?

бар – это 1, дом – 0, пиво – 1, водка – 0.

1) Сидим в баре, пьем пиво (11)

2) Сидим в баре, пьем водку (10)

3) Сидим дома, пьем пиво (01)

4) Сидим дома, пьем водку (00)

В этом примере с помощью двух битов мы закодировали 4 информации. 11 или 10 и тд. – это двух битная запись информации.

А сколько информации можно закодировать, используя три бита? Можно получить 8 информаций. Опять же пример из первой части:

1) Сидим в баре, пьем пиво без Вована (110)

2) Сидим в баре, пьем водку без Вована (100)

3) Сидим дома, пьем пиво без Вована (010)

4) Сидим дома, пьем водку без Вована (000)

5) Сидим в баре, пьем пиво с Вованом (111)

6) Сидим в баре, пьем водку с Вованом (101)

7) Сидим дома, пьем пиво с Вованом (011)

8) Сидим дома, пьем водку с Вованом (001)

111, 011, 010 и тд – это трех битная запись информации.

А если использовать 4 бита информации? Получаем из примера прошлой же статьи:

1) Сидим в баре, пьем пиво без Вована, смотрим хоккей (1101)

2) Сидим в баре, пьем водку без Вована, смотрим хоккей (1001)

3) Сидим дома, пьем пиво без Вована, смотрим хоккей (0101)

4) Сидим дома, пьем водку без Вована, смотрим хоккей (0001)

5) Сидим в баре, пьем пиво с Вованом, смотрим хоккей (1111)

6) Сидим в баре, пьем водку с Вованом, смотрим хоккей (1011)

7) Сидим дома, пьем пиво с Вованом, смотрим хоккей (0111)

8) Сидим дома, пьем водку с Вованом, смотрим хоккей (0011)

9) Сидим в баре, пьем пиво без Вована, смотрим футбол (1100)

10) Сидим в баре, пьем водку без Вована, смотрим футбол (1000)

11) Сидим дома, пьем пиво без Вована, смотрим футбол (0100)

12) Сидим дома, пьем водку без Вована, смотрим футбол (0000)

13) Сидим в баре, пьем пиво с Вованом, смотрим футбол (1110)

14) Сидим в баре, пьем водку с Вованом, смотрим футбол (1010)

15) Сидим дома, пьем пиво с Вованом, смотрим футбол (0110)

16) Сидим дома, пьем водку с Вованом, смотрим футбол (0010)

Формула возможных вариантов

В этом примере с помощью четырех бит мы смогли закодировать 16 информаций. А что будет если использовать пять бит? Сколько информации мы можем закодировать? Неужели нам придется опять перебирать варианты? Ну уж нет! Для этого есть простая формула.

Возможные варианты информаций= 2 N , где N – количество битов

Предположим, мы используем два бита, следовательно, мы можем закодировать 2 2 =2х2=4 информаций, то есть 4 возможных варианта, если же используем три бита, то 2 3 =2х2х2=8, значит 8 информаций мы можем закодировать с помощью трех битов и тд. Нетрудно посчитать, что с помощью пяти битов можно закодировать 2 5 =2х2х2х2х2=32. Все просто, не правда ли? А сколько информаций мы можем закодировать, если использовать 8 бит? Итак, 2 8 =2х2х2х2х2х2х2х2=256 информаций! Неплохо! Короче говоря, если наш воин, который носит варежки из мамонта, имел бы восемь рук, он смог бы показать с помощью них 256 всех комбинаций, и если бы они договорились, что какая-то комбинация – это столько то убитых человечков. :-). Жесть))) Кстати, как Вы прочитали из прошлой статьи, 8 бит = 1 Байт. Например, информация с кодом 1011 0111 (пробел между группами из 4 битов ставится для удобства) – это восемь бит или просто Байт .

Перевод из одной системы в другую с помощью калькулятора

Давайте вернемся к нашей десятичной системе счисления. Если Вы помните, к десятичной системе мы относим циферки от 0 и до 9. А Вы знаете, что с помощью нехитрых вычислений, мы можем переводить информацию из одной системы счисления в другую? В вашей Винде есть одна нехитрая программка, на которую вы почти не обращаете внимание – это калькулятор;-), с помощью которого можно легко переводить числа из десятичной в двоичную систему и наоборот.

Нажимаем в меню панели “Вид” —->”Программист” и у нас получается вот такой прикольный калькулятор.


Теперь самое простое, нажимаем маркер на “Dec” и для аккуратного вида на “1 байт”. Пишем число в калькуляторе и смотрим на его двоичный код.

В данном примере я посмотрел, как запишется число “8” в двоичной системе счисления. Вуаля! А вот снизу под восьмеркой сразу и результат: 1000. Именно так запишется число “8” из десятичной системы счисления в двоичную.


Также калькулятор может переводить даже отрицательные числа из десятичной в двоичную систему. А вот число “-5” из десятичной системы в двоичной запишется, как 1111 1011 .


Кто-то из Вас может похвастаться: “Да я сам могу переводить числа из десятичной в двоичную на листочке бумаги”. Но, Вам это надо, когда есть такой замечательный калькулятор? ;-)

Двоично-десятичная система счисления

Трудно все это, не правда ли? Чтобы облегчить жизнь, была придумана двоично-десятичная система счисления . Эта система, думаю, проще некуда! Например, число “123” из десятичной системы нам надо представить в двоично-десятичную. Каждую цифру пишем в двоичном четырехбитном коде. Используем калькулятор. Число 1 в десятичной системе – это 0001, число 2 – 0010, а 3 – 0011. Итак, число “123”, записанное в двоично-десятичной системе счисления запишется, как 0001 0010 0011. Ну реально, проще некуда!

Введение………………………………………………………………………………

I. Понятие двоичной системы счисления…………………………………………………………………..

1.1. История двоичной системы счисления

1.2. Перевод чисел из двоичной системы счисления в десятичную

1.3. Перевод десятичного числа в двоичное

II. Почему удобна двоичная система? ………………………………………………

2.1. Достоинства двоичной системы

2.2. Недостатки двоичной системы

Заключение …………………………………………………………………………..

Библиографический список………………………………………………………....


Введение:

Кто стоит у истоков двоичной системы счисления, как давно и где ее начали применять, почему двоичная система счисления сохранилась до наших дней.

Понятие «число» является ключевым как для математики, так и для информатики. Люди всегда считали и записывали числа, даже 5 тысяч лет назад. Но записывали их по другим правилам, хотя в любом случае число изображалось с помощью любого или нескольких символов, которые назывались цифрами.

Язык чисел, как и любой другой, имеет свой алфавит. В том языке чисел, которым мы обычно пользуемся, алфавитом служат десять цифр – от 0 до 9. Это десятичная система счисления.

Системой счисления мы будем называть способ представления числа символами некоторого алфавита, которые называют цифрами.

Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Десять пальцев рук – вот аппарат для счета, которым человек пользуется с доисторических времен. Древнее написание десятичных цифр:


Понятие двоичной системы счисления.

Двоичная система счисления - позиционная система счисления с основанием два. (Позиционная система счисления (позиционная нумерация) - система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).

История двоичной системы счисления.

Мысль о двоичной системе принадлежит Лейбницу, который полагал, что при трудных исследованиях в теории чисел она может иметь большие преимущества перед десятичной системой. Кроме того, при всяких арифметических операциях действия над числами, написанными в бинарной системе, облегчаются в высшей степени. Иезуит Буве (Bouvet), миссионер в Китае, которому Лейбниц писал о своём изобретении, сообщил ему, что в Китае существует загадочная надпись, которую можно вполне объяснить бинарной системой. Надпись эта, которую приписывают императору Фо-ги, жившему в 25 веке до н. э., основателю Китайской империи, покровителю наук и искусств, не могла быть объяснена китайскими учёными, которые считали её не имеющей смысла. Она состоит из ряда длинных и коротких чёрточек. Если принять, что длинная черта означает 1, а короткая 0, то вся надпись оказывается просто рядом натуральных чисел, написанных по двоичной системе. Вот эта надпись:

Двоичная система счисления оказалась удобной для использования в ЭВМ. Использование двоичной системы оказалось наиболее эффективным в электронных схемах: цифры 0 и 1 удобно кодировать уровнями напряжения, соответствующим напряжению на шинах питания, „0“ и „+V“ ; использование большего количества уровней привело бы к усложнению схем. Хотя были прецеденты создания и троичных ЭВМ.

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

0 – это ноль

1 – это один (и это предел разряда)

10 – это два

11 – это три (и это снова предел)

100 – это четыре

101 – пять

110 – шесть

111 – семь и т.д.

1.3. Перевод чисел из двоичной системы счисления в десятичную:

1. 10001001 = 1*2^{7} + 0*2^{6} + 0*2^{5} + 0*2^{4} + 0*2^{3} + 0*2^{2} + 0* 2^{1} + 0*2^{0} = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001_{2} = 137_{10}

2. 1011_{2} = 1*2^3 + 0*2*2+1*2^1+1*2^0 =1*8 + 1*2+1=11_{10}

3. 10101010_{2} = 1*2^{7} + 0*2^{6} + 1*2^{5} + 0*2^{4} + 1*2^{3} + 0*2^{2} + 1*2^{1} + 0*2^{0} = 128 + 32 +8 + 2 = 170_{10}

4. 101101_{2} = 1*2^{5} + 0*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} = 63_{10}

5. 100,101_{2} = 1*2^{2} +0*2^{1} + 0*2^{0} + 1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 4 + 2 = 6Элементы оглавления не найдены. _{10}

6. 111101_{2} = 1*2^{5} + 1*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} = 32 +16 + 13 = 61_{10}

7. 1001_{2} = 1*2^{3} + 0*2^{2} + 0*2^{1} + 1*2^{0} = 9

8. 10011,1_{2} = 1*2^{4} + 0*2^{3} + 0*2^{2} + 1*2^{1} + 1*2^{0} + 1*2^{-1} = 19,5

9. 11101,11_{2} = 1*2^{5} + 1*2^{4} + 1*2^{3} + 0*2^{1} +1*2^{0} + 1*2^{-1} = 57,5

10. 100111 = 1*2^{5} + 0*2^{4} + 0*2^{3} +1*2^{2} + 1*2^{1} + 1*2^{0} = 39

1.4. Перевод десятичного числа в двоичное:

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)

38 / 2 = 19 (0 остаток)

19 / 2 = 9 (1 остаток)

9 / 2 = 4 (1 остаток)

4 / 2 = 2 (0 остаток)

2 / 2 = 1 (0 остаток)

1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1. 1001101_{10} = 1*2^{6} + 0*2^{5} + 0*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} = 64 + 8 + 5 = 77_{2}

2. 49_{10} = \dfrac{ 49 } { 2 } = 110001_{2}

3. 15_{10} = \dfrac{ 49 } { 2 } = 1111_{2}

4. 31_{10} = \dfrac{ 31 } { 2 } = 11111_{2}

5. 0,45_{10} = \dfrac{ 0,45 } { 2 } = 0,11100_{2}

6. 95_{10} = \dfrac{ 95 } {2 } = 1011111_{2}

7. 102_{10} = \dfrac{102 } { 2 } = 1100110_{2}

8. 58_{10} = \dfrac{ 58 } { 2 } = 110100_{2}

9. 4956_{10} = \dfrac{ 4956 } { 2 } = 101101011100_{2}

10. 125_{10} = \dfrac{ 125 } { 2 } = 10111101_{2}

2. Почему удобна двоичная система?

Стоит отметить, что двоичная система издавна была предметом пристального внимания ученых. Официальное рождение двоичной системы счисления связано с именем Г.В.Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами. Во время работы ЭВМ постоянно происходит преобразование чисел из десятичной системы счисления в двоичную, и наоборот. Да и человеку, имеющему дело с ЭВМ, часто приходится прибегать к преобразованиям чисел.

Вот, что писал Лаплас об отношении великого немецкого математика Г.В. Лейбница к двоичной (бинарной) системе: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытиё и что высшее существо создает все сущее из небытия точно таким же образом, как единица и нуль в его системе выражают все числа».

Главное достоинство двоичной системы – простота алгоритмов сложения, вычитания, умножения и деления. Таблица умножения в ней совсем не требуется ничего запоминать, ведь любое число, умноженное на ноль, равно нулю, а умноженное на единицу равно самому себе. И при этом никаких переносов в следующие разряды, а они есть даже в троичной системе счисления.

Если отвлечься от технических деталей, то именно с помощью этих операций и выполняются все операции в компьютере, так как удалось создать надежно работающие технические устройства, которые могут со 100 процентной надежностью сохранять и распознавать не более двух различных состояний (цифр):

Электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;

Участок поверхности магнитного носителя информации (намагничен/ размагничен);

Участок поверхности лазерного диска (отражает/не отражает);

Триггер, может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.

Утверждение двоичной арифметики в качестве общепринятой при конструкции ЭВМ с программным управлением состоялось под влиянием работы Дж. фон Неймана о проекте первой ЭВМ с хранимой в памяти программой. Работа написана в 1946 году.

2.1. Достоинства двоичной системы счисления:

1. Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере.

2. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.

3. Представление информации посредством только двух состояний надежно и помехоустойчиво.

4. Возможность применения алгебры логики для выполнения логических преобразований.

5. Двоичная арифметика проще десятичной.

2.2. Недостатки двоичной системы счисления:

1. Итак, код числа, записанного в двоичной системе счисления представляет собой последовательность из 0 и 1. Большие числа занимают достаточно большое число разрядов.

2. Быстрый рост числа разрядов - самый существенный недостаток двоичной системы счисления.

3.1. Заключение:

В ходе изучения данной темы мы выяснили, что двоичная система счисления намного старше электронных машин. Двоичной системой счисления люди интересуются давно. Особенно сильным это увлечение было с конца 16 до 19 века. Знаменитый Лейбниц считал двоичную систему счисления простой, удобной, красивой. Даже по его просьбе была выбита медаль в честь этой «диадической» системы (так называли тогда двоичную систему счисления).

Двоичная система счисления наиболее проста и удобна для автоматизации.

Наличие в системе всего лишь двух символов упрощает их преобразование в электрические сигналы.

Из любой системы счисления можно перейти к двоичному коду.

Почти все ЭВМ используют либо непосредственно двоичную систему счисления, либо двоичное кодирование какой-либо другой системы счисления.

Но двоичная система имеет и недостатки:

Ею пользуются только для ЭВМ для внутренней и внешней работы;

Быстрый рост числа разрядов, необходимых для записи чисел.

Библиографический список

1. Нестеренко А.В. ЭВМ и профессия программиста. М.: Просвещение, 1990.

2. Решетников В.Н., Сотников А.Н. Информатика – что это? М.: Радио и связь, 1989.

3. Фомин С.В. Системы счисления. М.: Наука, 1987.

4. Информатика: Системы счисления: спецвыпуск, №42 1995.

5. Информатика: Семинар, №2, №3 2006.

6. Информатика: В мир информатики, №8 2007.

7. http://www.internet-school.ru/Enc.ashx?item=3773

Системы счисления

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные . Знаки, используемые при записи чисел, называются цифрами .

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы:

Например, VI = 5 + 1 = 6, а IX = 10 - 1 = 9.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией . Первая известная нам система, основанная на позиционном принципе - шестидесятeричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим - десятки. Следы вавилонской системы сохранились до наших дней в способах измерения и записи величин углов и промежутков времени.

Однако наибольшую ценность для нас имеет индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной , так как в ней десять цифр.

Для того чтобы лучше понять различие позиционной и непозиционной систем счисления, рассмотрим пример сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Большая цифра соответствует большему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 555 7 - число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы - это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p, как x=a n *p n +a n-1 *p n-1 + a 1 *p 1 +a 0 *p 0 , где a n ...a 0 - цифры в представлении данного числа. Так, например,

1035 10 =1*10 3 +0*10 2 +3*10 1 +5*10 0 ;

1010 2 = 1*2 3 +0*2 2 +1*2 1 +0*2 0 = 10.

Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины. Однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.

Для того чтобы нормально оперировать с числами, записанными в таких нетрадиционных системах, важно понимать, что принципиально они ничем не отличаются от привычной нам десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

Почему же мы не пользуемся другими системами счисления? В основном потому, что в повседневной жизни мы привыкли пользоваться десятичной системой счисления, и нам не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления , так как оперировать над числами, записанными в двоичном виде, довольно просто.

Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

Двоичная система счисления

Люди предпочитают десятичную систему , вероятно, потому, что с древних времен считали по пальцам. Но, не всегда и не везде люди пользовались десятичной системой счисления. В Китае, например, долгое время применялась пятеричная система счисления. В ЭВМ используют двоичную систему потому, что она имеет ряд преимуществ перед другими:

    для ее реализации используются технические элементы с двумя возможными состояниями (есть ток - нет тока, намагничен - ненамагничен);

    представление информации посредством только двух состояний надежно и помехоустойчиво ;

    возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

    двоичная арифметика проще десятичной (двоичные таблицы сложения и умножения предельно просты).

В двоичной системе счисления всего две цифры, называемые двоичными (binary digits ). Сокращение этого наименования привело к появлению термина бит , ставшего названием разряда двоичного числа. Веса разрядов в двоичной системе изменяются по степеням двойки. Поскольку вес каждого разряда умножается либо на 0, либо на 1, то в результате значение числа определяется как сумма соответствующих значений степеней двойки. Если какой-либо разряд двоичного числа равен 1, то он называется значащим разрядом. Запись числа в двоичном виде намного длиннее записи в десятичной системе счисления .

Арифметические действия, выполняемые в двоичной системе, подчиняются тем же правилам, что и в десятичной системе. Только в двоичной системе перенос единиц в старший разряд возникает чаще, чем в десятичной. Вот как выглядит таблица сложения в двоичной системе:

Рассмотрим подробнее, как происходит процесс умножения двоичных чисел. Пусть надо умножить число 1101 на 101 (оба числа в двоичной системе счисления ). Машина делает это следующим образом: она берет число 1101 и, если первый элемент второго множителя равен 1, то она заносит его в сумму. Затем сдвигает число 1101 влево на одну позицию, получая тем самым 11010, и если, второй элемент второго множителя равен единице, то тоже заносит его в сумму. Если элемент второго множителя равен нулю, то сумма не изменяется.

Двоичное деление основано на методе, знакомом вам по десятичному делению, т. е. сводится к выполнению операций умножения и вычитания. Выполнение основной процедуры - выбор числа, кратного делителю и предназначенного для уменьшения делимого , здесь проще, так как таким числом могут быть только либо 0, либо сам делитель.

Следует отметить, что большинство калькуляторов, реализованных на ЭВМ (в том числе и KCalc) позволяют осуществлять работу в системах счисления с основаниями 2, 8, 16 и, конечно, 10.

8-ная и 16-ная системы счисления

При наладке аппаратных средств ЭВМ или создании новой программы возникает необходимость "заглянуть внутрь" памяти машины, чтобы оценить ее текущее состояние. Но там все заполнено длинными последовательностями нулей и единиц двоичных чисел. Эти последовательности очень неудобны для восприятия человеком, привыкшим к более короткой записи десятичных чисел. Кроме того, естественные возможности человеческого мышления не позволяют оценить быстро и точно величину числа, представленного, например, комбинацией из 16 нулей и единиц.

Для облегчения восприятия двоичного числа решили разбивать его на группы разрядов, например, по три или четыре разряда. Эта идея оказалась очень удачной, так как последовательность из трех бит имеет 8 комбинаций, а последовательность из 4 бит - 16. Числа 8 и 16 являются степенями двойки, поэтому легко находить соответствие с двоичными числами. Развивая эту идею, пришли к выводу, что группы разрядов можно закодировать, сократив при этом длину последовательности знаков. Для кодировки трех битов требуется восемь цифр, поэтому взяли цифры от 0 до 7 десятичнойсистемы . Для кодировки же четырех битов необходимо шестнадцать знаков; для этого взяли 10 цифр десятичной системы и 6 букв латинского алфавита: A, B, C, D, E, F. Полученные системы, имеющие основания 8 и 16, назвали соответственно восьмеричной и шестнадцатеричной.

В восьмеричной (octal ) системе счисления используются восемь различных цифр 0, 1, 2, 3, 4, 5, 6, 7. Основание системы - 8. При записи отрицательных чисел перед последовательностью цифр ставят знак минус. Сложение, вычитание, умножение и деление чисел, представленных в восьмеричной системе, выполняются весьма просто подобно тому, как это делают в общеизвестной десятичной системе счисления.

В шестнадцатеричной (hexadecimal ) системе счисления применяется десять различных цифр и шесть первых букв латинского алфавита. При записи отрицательных чисел слева от последовательности цифр ставят знак минус. Для того чтобы при написании компьютерных программ отличить числа, записанные в шестнадцатеричной системе, от других, перед числом ставят 0x. То есть 0x11 и 11 - это разные числа. В других случаях можно указать основание системы счисления нижним индексом.

Шестнадцатеричная система счисления широко используется при задании различных оттенков цвета при кодировании графической информации (модель RGB). Так, в редакторе гипертекста Netscape Composer можно задавать цвета для фона или текста как в десятичной, так и шестнадцатеричной системах счисления.

Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде

позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел

позаимствовала арабская нация, у них, в свою очередь, взяли европейцы. В Европе эту систему стали

называть арабской.

Позиционная система — значение всех цифр зависит от позиции (разряда) данной цифры в числе.

Примеры, стандартная 10-я система счисления - это позиционная система. Допустим дано число 453.

Цифра 4 обозначает сотни и соответствует числу 400, 5 — кол-во десятков и соответствует значению 50,

а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.

Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Двоичная система счисления.

Здесь только 2 цифры - это 0 и 1. Основание двоичной системы - число 2.

Цифра, которая находится с самого края справа, указывает количество единиц, вторая цифра -

Во всех разрядах возможна лишь одна цифра — или нуль, или единица.

С помощью двоичной системы счисления возможно закодировать всякое натуральное число, представив

это число в виде последовательности нулей и единиц.

Пример: 10112 = 1*2 3 + 0*2*2+1*2 1 +1*2 0 =1*8 + 1*2+1=1110

Двоичную систему счисления, как и десятичную систему счисления , зачастую используют в вычислительной

технике. Текст и числа компьютер хранит в своей памяти в двоичном коде и программным способом преобразует

в изображение на экране.

Сложение, вычитание и умножение двоичных чисел.

Таблица сложения в двоичной системе счисления:

10 (перенос в

старший разряд)

Таблица вычитания в двоичной системе счисления:

(заём из старшего

разряда) 1

Пример сложения «столбиком» (14 10 + 5 10 = 19 10 или 1110 2 + 101 2 = 10011 2):

+ 1 1 1 0
1 0 1
1 0 0 1 1

Таблица умножения в двоичной системе счисления:

Пример умножения «столбиком» (14 10 * 5 10 = 70 10 или 1110 2 * 101 2 = 1000110 2):

* 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
= 1 0 0 0 1 1 0

Преобразование чисел в двоичной системе счисления.

Для преобразования из двоичной системы в десятичную пользуются следующей таблицей степеней

основания 2:

Начиная с цифры один каждая цифра умножается на 2. Точка, стоящая после 1, называют двоичной точкой .

Преобразование двоичных чисел в десятичные.

Пусть, есть двоичное число 110001 2 . Для перевода в десятичное записываем его в виде суммы по

разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

Немного по другому:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Также хорошо записывать расчет как таблицу:

Двигаемся справа налево. Под всеми двоичными единицами записываем её эквивалент строчкой ниже.

Преобразование дробных двоичных чисел в десятичные.

Задание: перевести число 1011010, 101 2 в десятичную систему.

Записываем заданное число в таком виде:

1*2 6 +0*2 5 +1*2 4 +1*2 3 +0 *2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 -1 + 0 * 2 -2 + 1 * 2 -3 = 90,625

Другой вариант записи:

1*64+0*32+1*16+1*8+0*4+1*2+0*1+1*0,5+0*0,25+1*0,125 = 90,625

Либо в виде таблицы:

0.25

0.125

0.125

Преобразование десятичных чисел в двоичные.

Пусть, необходимо перевести число 19 в двоичное. Можем сдеать это таким образом:

19 /2 = 9 с остатком 1

9 /2 = 4 c остатком 1

4 /2 = 2 без остатка 0

2 /2 = 1 без остатка 0

1 /2 = 0 с остатком 1

То есть, каждое частное делится на 2 и записывается остаток в конец двоичной записи. Деление

продолжается до того момента, когда в частном не будет нуля. Итог пишем справа налево. Т.е. нижняя

цифра (1) будет крайней левой и так далее. Итак, у нас получилось число 19 в двоичной записи: 10011.

Преобразование дробных десятичных чисел в двоичные.

Когда в заданном числе присутствует целая часть, то ее преобразуют отдельно от дробной. Перевод

дробного числа из десятичной системы счисления в двоичную происходит следующим образом:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего

разряда числа в двоичной системе счисления;

  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если

достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над

дробной частью произведения.

Пример : Нужно перевести дробное десятичное число 206,116 в дробное двоичное число.

Переведя целую часть, получаем 206 10 =11001110 2 . Дробная часть 0,116 умножается на основание 2,

заносим целые части произведения в разряды после запятой:

0,116 . 2 = 0,232

0,232 . 2 = 0,464

0,464 . 2 = 0,928

0,928 . 2 = 1,856

0,856 . 2 = 1,712

0,712 . 2 = 1,424

0,424 . 2 = 0,848

0,848 . 2 = 1,696

0,696 . 2 = 1,392

0,392 . 2 = 0,784

Результат: 206,116 10 ≈ 11001110,0001110110 2

Алгоритм перевода чисел из одной системы счисления в другую.

1. Из десятичной системы счисления:

  • делим число на основание переводимой системы счисления;
  • находим остаток от деления целой части числа;
  • записываем все остатки от деления в обратном порядке;

2. Из двоичной системы счисления:

  • для перевода в десятичную систему счисления находим сумму произведений основания 2 на

соответствующую степень разряда;

План урока

Здесь вы узнаете:

♦ как работает с числами;
♦ что такое электронная таблица;
♦ как решаются вычислительные задачи;
♦ с помощью электронных таблиц;
♦ как можно использовать электронные таблицы для информационного моделирования.

Двоичная система счисления

Основные темы параграфа:

♦ десятичная и двоичная системы счисления;
♦ развернутая форма записи числа;
♦ перевод двоичных чисел в десятичную систему;
♦ перевод десятичных чисел в двоичную систему;
♦ арифметика двоичных чисел.

В данной главе речь пойдет об организации вычислений на компьютере . Вычисления связаны с хранением и обработкой чисел.

Компьютер работает с числами в двоичной системе счисления.

Эта идея принадлежит Джону фон Нейману, сформулировавшему в 1946 году принципы устройства и работы ЭВМ. Выясним, что такое система счисления.

Десятичная и двоичная системы счисления

Системой счисления или в сокращенном варианте СС называют такую систему записи чисел, которая имеет определенный набор цифр.

Об истории различных систем счисления вы узнали, когда изучали 7 главу учебника. А сегодня мы с вами обратим наше внимание на такие системы счисления, как двоичная и десятичная СС.

Как вам уже известно из изученного ранее материала, что одной из наиболее часто применяемых систем счисления является десятичная СС. А называется эта система так потому, что в основе этого словообразования есть число 10. Вот поэтому и система счисления называется десятичной.

Вы уже знаете, что в этой системе используют такие десять цифр, как 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. А вот числу десять отведена исключительная роль, так как на наших руках насчитывается десять пальцев. То есть, десять цифр являются основанием данной системы счисления.

А вот в двоичной системе счисления, задействованные только две цифры, такие, как 0 и 1 и основанием этой системы является число 2.

Теперь давайте попробуем разобраться, как с помощью всего лишь двух цифр представить какую-то величину.

Развернутая форма записи числа

Давайте обратимся к своей памяти и вспомним, какой в десятичной СС существует принцип записи чисел. То есть, для вас уже не будет секретом, что в такой СС запись числа зависит от места расположения цифры, то есть, от ее позиции.

Так, например, цифра, которая является крайней справа, говорит нам о количестве единиц этого числа, следующая за этой цифрой, как правило, указывает на количество двоек и т.д.

Если мы с вами, например, возьмем такое число, как 333, то увидим, что крайняя правая цифра обозначает три единицы, потом три десятка и за ней – три сотни.

Теперь это изобразим в виде такого равенства:

Здесь мы видим равенство, в котором выражение, расположенное с правой стороны от знака равно, предоставлено в виде развернутой формы записи этого многозначного числа.

Рассмотрим еще один пример многозначного десятичного числа, который также представлен в развернутой форме:

Перевод двоичных чисел в десятичную систему

Теперь давайте для примера возьмем такое многозначительное двоичное число, как:

В этом многозначительном числе мы видим с правой стороны внизу двойку, которая нам указывает на основание системы счисления. То есть, нам понятно, что перед нами двоичное число и перепутать его с десятичным, мы уже не можем.

И значение каждой следующей цифры в двоичном числе возрастает в 2 раза при каждом шаге справа налево. Теперь давайте посмотрим, как будет выглядеть развернутая форма записи этого двоичного числа:

На этом примере мы видим, как можно перевести перевели двоичное число в десятичную систему.

Теперь давайте еще приведем несколько примеров перевода двоичных чисел в десятичную систему счисления:

Это пример нам показывает то, что двузначному десятичному числу, в данном случае, соответствует шестизначное двоичное. Для двоичной системы характерно такое возрастание количества цифр при увеличении значения числа.

А теперь давайте посмотрим, как будет выглядеть начало натурального ряда чисел в десятичной (А10) и двоичной (А2) СС:



Перевод десятичных чисел в двоичную систему

Рассмотрев приведенные примеры выше, надеюсь вам теперь понятно, как происходит перевод двоичного числа в равное десятичное число. Ну, а теперь давайте попробуем сделать обратный перевод. Смотрим, что нам для этого необходимо сделать. Нам для такого перевода необходимо попробовать разложить десятичное число на слагаемые, которые представляют собой степени двойки. Приведем такой пример:

Как видим, это сделать не так уж и просто. Давайте попробуем рассмотреть другой, более простой метод перевода из десятичной СС в двоичную. Такой метод состоит в том, что известное десятичное число, как правило, делиться на два, а его полученный остаток и будет выступать младшим разрядом искомого числа. Это, вновь полученное число мы снова делим на два и получаем следующий разряд искомого числа. Такой процесс деления мы будем продолжать до тех пор, пока частное не станет меньше основания двоичной системы, то есть, меньше двойки. Вот такое полученное частное и будет старшей цифрой числа, которое мы искали.

Давайте теперь рассмотрим методы записи деления на число два. Для примера возьмем число 37 и попробуем его перевести в двоичную систему.



На данных примерах мы видим, что а5, а4, а3, а2, а1, а0 являются обозначением цифр в записи двоичного числа, которые осуществляются по порядку слева направо. В итоге мы с вами получим:


Арифметика двоичных чисел

Если исходить из правил в арифметике, то легко заметить, что в двоичной системе счислений, они намного проще, чем в десятичной.

Теперь давайте вспомним варианты сложения и умножения однозначных двоичных чисел.


Благодаря такой простоте, которая легко согласовывается с битовой структурой компьютерной памяти, двоичная система счисления привлекла внимание создателей компьютера.

Обратите внимание на то, как выполняется пример сложения двух многозначных двоичных чисел при помощи столбика:


А вот перед вами пример умножения многозначных двоичных чисел в столбик:


Вы заметили, как легко и просто выполнять такие примеры.

Коротко о главном

Система счисления - определенные правила записи чисел и связанные с этими правилами способы выполнения вычислений.

Основание системы счисления равно количеству используемых в ней цифр.

Двоичные числа - числа в двоичной системе счисления. В их записи используются две цифры: 0 и 1.

Развернутая форма записи двоичного числа - это его представление в виде суммы степеней двойки, умноженных на 0 или на 1.

Использование двоичных чисел в компьютере связано с битовой структурой компьютерной памяти и простотой двоичной арифметики.

Достоинства двоичной системы счисления

А теперь давайте рассмотрим, какими достоинствами обладает двоичная система исчисления:

Во-первых, достоинством двоичной системы счисления является то, что с ее помощью довольно таки просто осуществлять процессы хранения, передачи и обработки информации на компьютере.
Во-вторых, для ее выполнения достаточно не десять элементов, а лишь два;
В-третьих, отображение информации с помощью лишь двух состояний, это надежнее и более устойчиво к различным помехам;
В-четвертых, есть возможность использования алгебры логики для осуществления логических преобразований;
В-пятых, двоичная арифметика все же проще десятичной, поэтому является более удобной.

Недостатки двоичной системы счисления

Двоичная система счисления менее удобна, так как человек привык больше пользоваться десятичной системой, которая намного короче. А вот, в двоичной системе большие числа имеет довольно таки большое число разрядов, что и является ее существенным недостатком.

Почему двоичная система счисления так распространена?

Популярной двоичная система счисления является потому, что это язык вычислительной техники, где каждая цифра должна быть каким-то образом представлена на физическом носителе.

Ведь проще иметь два состояния при изготовлении физического элемента, чем придумывать устройство, в котором должно присутствовать десять различных состояний. Согласитесь, что это было бы намного сложней.

По сути, это и есть одной из основных причин популярности двоичной системы счисления.

История возникновения двоичной системы счисления

История создания двоичной системы счисления в арифметике, довольно таки яркая и стремительная. Основателем этой системы считают известного немецкого ученого и математика Г. В. Лейбница. Им была опубликована статья, в которой он описал правила, по которым можно было выполнить всевозможные арифметические операции над двоичными числами.

К сожалению, до начала двадцатого века двоичная система счисления была малозаметна в прикладной математике. А после того, как начали появляться простые счетные механические приборы, то ученые стали более активно обращать внимание на двоичную систему счисления и начали ее активно изучать, так как для вычислительных устройств она была удобна и незаменима. Она является той минимальной системой, с помощью которой можно полностью реализовать принцип позиционности в цифровой форме записи чисел.

Вопросы и задания

1. Назовите преимущества и недостатки двоичной системы счисления по сравнению с десятичной.
2. Какие двоичные числа соответствуют следующим десятичным числам:
128; 256; 512; 1024?
3. Чему в десятичной системе равны следующие двоичные числа:
1000001; 10000001; 100000001; 1000000001?
4. Переведите в десятичную систему следующие двоичные числа:
101; 11101; 101010; 100011; 10110111011.
5. Переведите в двоичную систему счисления следующие десятичные числа:
2; 7; 17; 68; 315; 765; 2047.
6. Выполните сложение в двоичной системе счисления:
11 + 1; 111 + 1; 1111 + 1; 11111 + 1.
7. Выполните умножение в двоичной системе счисления:
111 · 10; 111 · 11; 1101 · 101; 1101 · 1000.

И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов

Loading...Loading...