Самый мощный квантовый компьютер. Квантовое превосходство: всё о квантовых компьютерах. Квантовый процессор: описание работы

О квантовых вычислениях, по крайней мере в теории, говорят уже несколько десятилетий. Современные типы машин, использующие неклассическую механику для обработки потенциально немыслимых объемов данных, стали большим прорывом. По мнению разработчиков, их реализация оказалась, пожалуй, самой сложной технологией из когда-либо созданных. Квантовые процессоры работают на уровнях материи, о которых человечество узнало всего 100 лет назад. Потенциал таких вычислений огромен. Использование причудливых свойств квантов позволит ускорить расчеты, поэтому многие задачи, которые в настоящее время классическим компьютерам не по силам, будут решены. И не только в области химии и материаловедения. Уолл-стрит также проявляет заинтересованность.

Инвестиции в будущее

CME Group проинвестировала ванкуверскую компанию 1QB Information Technologies Inc., разрабатывающую программное обеспечение для процессоров квантового типа. По мнению инвесторов, такие вычисления, вероятно, окажут наибольшее влияние на отрасли, которые работают с большими объемами чувствительных ко времени данных. Примером таких потребителей являются финансовые учреждения. Goldman Sachs инвестировал в D-Wave Systems, а компания In-Q-Tel финансируется ЦРУ. Первая производит машины, которые делают то, что называется «квантовым отжигом», т. е. решает низкоуровневые задачи оптимизации с помощью квантового процессора. Intel тоже занимается инвестированием в данную технологию, хотя считает ее реализацию делом будущего.

Зачем это нужно?

Причина, по которой квантовые вычисления являются столь захватывающими, кроется в их идеальном сочетании с машинным обучением. В настоящее время это основное приложение для подобных расчетов. Отчасти самой идеи квантового компьютера - использование физического устройства для поиска решений. Иногда данную концепцию объясняют на примере игры Angry Birds. Для имитации гравитации и взаимодействия сталкивающихся объектов ЦПУ планшета использует математические уравнения. Квантовые процессоры ставят такой подход с ног на голову. Они «бросают» несколько птиц и смотрят, что происходит. В микрочип записывается птицы, их бросают, какова оптимальная траектория? Затем проверяются все возможные решения или, по крайней мере, очень большое их сочетание, и выдается ответ. В квантовом компьютере не математик, вместо него работают законы физики.

Как это функционирует?

Основные строительные блоки нашего мира - квантово-механические. Если посмотреть на молекулы, то причина, по которой они образуются и остаются стабильными - взаимодействие их электронных орбиталей. Все квантово-механические расчеты содержатся в каждой из них. Их количество растет экспоненциально росту числа моделируемых электронов. Например, для 50 электронов существует 2 в 50-й степени возможных вариантов. Это феноменально поэтому рассчитать его сегодня нельзя. Подключение теории информации к физике может указать путь к решению таких задач. 50-кубитовному компьютеру это по силам.

Заря новой эры

Согласно Лэндону Даунсу, президенту и соучредителю компании 1QBit, квантовый процессор - это возможность использовать вычислительные мощности субатомного мира, что имеет огромное значение для получения новых материалов или создания новых лекарств. Происходит переход от парадигмы открытий к новой эре дизайна. Например, квантовые вычисления можно использовать для моделирования катализаторов, которые позволяют извлекать углерод и азот из атмосферы, и тем самым помочь остановить глобальное потепление.

На передовой прогресса

Сообщество разработчиков данной технологии чрезвычайно взволновано и занято активной деятельностью. Команды по всему миру в стартапах, корпорациях, университетах и правительственных лабораториях наперегонки строят машины, в которых используются различные подходы к обработке квантовой информации. Созданы сверхпроводящие кубитовые чипы и кубиты на захваченных ионах, которыми занимаются исследователи из Университета штата Мэриленд и Национального института стандартов и технологий США. Microsoft разрабатывает топологический подход под названием Station Q, целью которого является применение неабелева аниона, существование которого еще окончательно не доказано.

Год вероятного прорыва

И это только начало. По состоянию на конец мая 2017 г. количество процессоров квантового типа, которые однозначно делают что-то быстрее или лучше, чем классический компьютер, равно нулю. Такое событие установит «квантовое превосходство», но пока оно не произошло. Хотя вероятно, что это может свершиться еще в этом году. Большинство инсайдеров говорит, что явным фаворитом является группа Google во главе с профессором физики Калифорнийского университета в Санта-Барбаре Джоном Мартини. Ее цель - достижение вычислительного превосходства с помощью 49-кубитного процессора. К концу мая 2017 г. команда успешно тестировала 22-кубитный чип в качестве промежуточного шага к разборке классического суперкомпьютера.

С чего все началось?

Идее использования квантовой механики для обработки информации уже десятки лет. Одно из ключевых событий произошло в 1981 году, когда IBM и MIT совместно организовали конференцию по физике вычислений. Знаменитый физик предложил построить квантовый компьютер. По его словам, для моделирования следует воспользоваться средствами квантовой механики. И это прекрасная задача, поскольку не выглядит такой простой. У квантового процессора принцип действия основан на нескольких странных свойствах атомов - суперпозиции и запутанности. Частица может находиться в двух состояниях одновременно. Однако при измерении она окажется только в одном их них. И невозможно предугадать, в каком, кроме как с позиции теории вероятности. Этот эффект лежит в основе мысленного эксперимента с котом Шредингера, который находится в коробке одновременно живым и мертвым до тех пор, пока наблюдатель украдкой туда не заглянет. Ничто в повседневной жизни не работает подобным образом. Тем не менее, около 1 млн экспериментов, проведенных с начала ХХ века, показывают, что суперпозиция действительно существует. И следующим шагом будет выяснение того, как использовать эту концепцию.

Квантовый процессор: описание работы

Классические биты могут принимать значение 0 или 1. Если пропустить их строку через «логические вентили» (И, ИЛИ, НЕ и т. д.), то можно умножать числа, рисовать изображения и т. п. Кубит же может принимать значения 0, 1 или оба одновременно. Если, скажем, 2 кубита запутаны, то это делает их совершенно коррелированными. Процессор квантового типа может использовать логические вентили. Т. н. вентиль Адамара, например, помещает кубит в состояние совершенной суперпозиции. Если суперпозицию и запутанность совместить с умно расположенными квантовыми вентилями, то начинает раскрываться потенциал субатомных вычислений. 2 кубита позволяют исследовать 4 состояния: 00, 01, 10 и 11. Принцип работы квантового процессора таков, что выполнение логической операции дает возможность работать со всеми положениями сразу. И число доступных состояний равно 2 в степени количества кубитов. Так что, если сделать 50-кубитный универсальный квантовый компьютер, то теоретически можно исследовать все 1,125 квадриллиона комбинаций одновременно.

Кудиты

Квантовый процессор в России видят несколько иначе. Ученые из МФТИ и Российского квантового центра создали «кудиты», представляющие собой несколько «виртуальных» кубитов с различными «энергетическими» уровнями.

Амплитуды

Процессор квантового типа обладает тем преимуществом, что квантовая механика базируется на амплитудах. Амплитуды подобны вероятности, но они также могут быть отрицательными и комплексными числами. Так что, если необходимо рассчитать вероятность события, можно сложить амплитуды всевозможных вариантов их развития. Идея квантовых вычислений заключается в попытке настройки таким образом, чтобы некоторые пути к неправильным ответам имели положительную амплитуду, а некоторые - отрицательную, и поэтому они бы компенсировали друг друга. А пути, ведущие к правильному ответу, имели бы амплитуды, которые находятся в фазе друг с другом. Хитрость в том, что необходимо все организовать, не зная заранее, какой ответ правильный. Так что экспоненциальность квантовых состояний в сочетании с потенциалом интерференции между положительными и отрицательными амплитудами является преимуществом вычислений данного типа.

Алгоритм Шора

Есть много задач, которые компьютер не в состоянии решить. Например, шифрование. Проблема заключается в том, что не так легко найти простые множители 200-значного числа. Даже если ноутбук работает с отличным ПО, то, возможно, придется ждать годы, чтобы найти ответ. Поэтому еще одной вехой в квантовых вычислениях стал алгоритм, опубликованный в 1994 г. Питером Шором, теперь профессором математики в MIT. Его метод заключается в поиске множителей большого числа с помощью квантового компьютера, которого тогда еще не существовало. По сути, алгоритм выполняет операции, которые указывают на области с правильным ответом. В следующем году Шор открыл способ квантовой коррекции ошибок. Тогда многие поняли, что это - альтернативный способ вычислений, который в некоторых случаях может быть более мощным. Тогда последовал всплеск интереса со стороны физиков к созданию кубитов и логических вентилей между ними. И вот, два десятилетия спустя, человечество стоит на пороге создания полноценного квантового компьютера.

На днях в ходе Международной квантовой конференции в Москве российский ученый Михаил Лукин представил самый мощный на сегодняшний день 51-кубитный квантовый компьютер, сообщает 4pda.ru.

Число 51 было выбрано не случайно: Google уже долгое время работает над 49-кубитным квантовым компьютером, поэтому обойти конкурента было для Лукина - как для азартного ученого - делом принципа.

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Михаил Лукин сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49, потому что в Google все время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Ученые убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали все свое волшебство и профессионализм».

Сами же кубиты, в количестве которых так неистово соревнуются ученые, - это вычислительный юнит, который одновременно представляет собой и ноль, и единицу, в то время как привычный бит - это либо одно, либо другое. Современные суперкомпьютеры выстраивают последовательности, а квантовые компьютеры, в свою очередь, производят вычисления параллельно, в одно мгновение. Благодаря такому подходу вычисления, на которые сегодняшним суперкомпьютерам понадобятся тысячи лет, квантовый компьютер может осуществить моментально.

«Это одна из самых больших квантовых систем, которые были созданы, - рассказывает Михаил Лукин, профессор Гарвардского университета и сооснователь Российского квантового центра. - Мы входим в тот режим, где уже классические компьютеры не могут справиться с вычислениями. Делаем маленькие открытия, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, но до конца не понимаем».

Пока даже создатели мощнейших квантовых компьютеров не могут сказать наверняка, зачем человечеству понадобятся настолько мощные вычислительные машины. Возможно, с их помощью будут разработаны принципиально новые материалы. Могут быть совершены новые открытия на ниве физики или химии. Или, возможно, квантовые компьютеры помогут, наконец, полностью понять природу человеческого мозга и сознания.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесет, - полагает Руслан Юнусов, директор Российского квантового центра. - Здесь можно привести пример транзистора. Когда придуман был транзистор, никто не представлял, что на этом транзисторе построятся компьютеры. А когда построили компьютеры, никто не представлял, как сильно изменится жизнь».

То, как именно будут использоваться квантовые компьютеры, покажет только время.

В IT сложилась предреволюционная ситуация, хотя в курсе происходящего остаются лишь немногие интересующиеся и еще более узкий круг специалистов. А между тем уже в этом году ожидается событие исторического масштаба: квантовые компьютеры, разработка которых продолжается уже более трех десятилетий, впервые смогут проводить вычисления, недоступные для самых мощных суперкомпьютеров традиционной кремниевой архитектуры. Если ожидания оправдаются, скоро мы вступим в эру« квантового превосходства». Но хотя название для этой эпохи давно придумано, что нас в ней ждет, не знает пока никто.

Александр Ершов

Стенд компании Intel на прошедшей в начале года конференции потребительской электроники CES в Лас-Вегасе, как обычно, был заполнен журналистами и техноблогерами. Новинки крупнейшего производителя микрочипов всегда потенциально интересны, хотя в последние годы эти обновления — чуть больше ядер, чуть меньше энергопотребление — все реже привлекают внимание публики. Однако на этот раз технологическому гиганту действительно было чем похвастаться: посетителям показали квантовый процессор Tangle Lake, способный — пусть теоретически и лишь в некоторых задачах — делать то, что пока было по силам лишь лучшим суперкомпьютерам.

Tangle Lake ни размерами, ни формой не слишком выделяется на фоне обычной продукции Intel. Но принципы, на которых он работает, далеки от тех, на которых построена традиционная электроника. Вместо миллиардов транзисторов на новой микросхеме имеется всего 49 элементов. И это не полупроводниковые переключатели тока, а кубиты («квантовые биты»), элементарные ячейки, способные работать с квантовой информацией. В данном случае они представляют собой крохотные сверхпроводящие антенны.


Это не единственный вариант получить кубиты для квантового компьютера, но в данном случае важнее их число. 49 не рекорд: еще до презентации Tangle Lake компания IBM рассказала о работе над квантовым компьютером на 50 кубит, а группа под руководством гарвардского физика Михаила Лукина сделала экспериментальный 51-кубитный вычислитель. Легко заметить, что все эти проекты построены вокруг цифры в полсотни кубит: именно на ней обычно устанавливают планку, после которой стоит ожидать наступления «квантового превосходства».

Преимущество неопределенности

Использовать для расчетов поведения квантовых систем не обычные компьютеры, а другие квантовые системы, которые могли бы играть роль упрощенной модели, предложил еще Ричард Фейнман в 1981 году. Справедливости ради стоит добавить, что идея, видимо, витала в воздухе: почти за год до того ее высказывал советский математик Юрий Манин. В самом деле, трудность, с которой сталкиваются обычные компьютеры при моделировании таких систем, заключается в самой их квантовой природе, в неустранимой неопределенности параметров взаимодействующих частиц.



Наименее универсальная форма квантового компьютера. Его легче всего построить, однако он способен выполнять лишь очень ограниченный круг задач, связанных с оптимизацией. Многие эксперты сомневаются в том, что такое устройство может иметь какие-либо преимущества перед традиционным компьютером. Применение: задачи на оптимизацию Универсальность: ограниченная. Вычислительная мощность: не превышает традиционную

Допустим, нам нужно посчитать, как поведет себя атом, если мы направим на него фотон; для этого нам требуется выяснить поляризацию фотона. Единственный способ сделать это — провести измерения, а до этого поляризация останется неопределенной: физики говорят о суперпозиции, наложении возможных значений. Для расчетов все варианты должны быть рассмотрены по отдельности, и в нашем примере это займет вдвое больше времени, чем если бы нужные параметры поляризации были известны. Более того, стоит начать добавлять в систему другие компоненты (несколько атомов, несколько фотонов), и неопределенности придется перемножать, а сложность вычислений вырастет экспоненциально.

Идея квантового компьютера заключалась в том, чтобы обратить недостаток в достоинство: использовать для вычислений саму неопределенность, которая так затрудняет обычные расчеты. Представим, что вам нужно подобрать пароль, у которого неизвестны последние два бита. Тут возможны четыре комбинации: 00, 01, 10 и 11. В классическом случае каждый из них необходимо считать отдельно: подставить его в нужное место и проверить результат. Однако если носителем информации станет квантовый объект — например, два кубита с суперпозицией поляризации, — то все четыре комбинации можно будет проверить одновременно.


Позволит проводить симуляцию сложных квантовых взаимодействий, которые недоступны для моделирования на любых традиционных компьютерах. Считается, что аналоговый квантовый компьютер будет содержать от 50 до 100 кубитов. Применение: квантовая химия, разработка новых материалов, задачи на оптимизацию, семплирование, квантовая динамика. Универсальность: частичная. Вычислительная мощность: высокая

Если правильная комбинация возможных состояний кубитов существует, можно не сомневаться, что они примут и ее тоже. Главное — организовать взаимодействие между ними так, чтобы мы смогли прочитать и понять получившийся ответ. Мощь квантовых компьютеров заключается именно в экспоненциально растущем числе операций, которые можно сделать за один шаг. Система, состоящая из двух кубитов, позволяет одновременно рассмотреть четыре варианта развития событий, система из четырех — 16. После 50, как мы помним, наступает «квантовое превосходство», а на число комбинаций всех возможных состояний квантового компьютера из 300 кубитов уже не хватит атомов во Вселенной.

Чтобы взять эту планку, нам понадобятся физические носители кубитов. В этой роли могут выступать отдельные атомы, способные находиться в разных энергетических состояниях, или дефекты кристаллической структуры («вакансии»), несущие спин разного направления, или даже относительно крупные объекты — как те сверхпроводниковые антенны, на которых построен Tangle Lake. Какой именно вариант станет стандартом в будущем, пока сказать трудно. Так в свое время было с электрической лампой: физика понятна, но инженерных решений предложен целый букет. Только опыт применения покажет достоинства, недостатки и перспективы разных систем.


Наиболее мощная и наиболее гибкая с точки зрения вычислительных задач версия квантового компьютера. Разработка такого устройства связана с большим количеством технических трудностей. По современным оценкам, в его составе должно иметься не менее 100 000 физических кубитов. Применение: безопасные вычисления, машинное обучение, криптография, квантовая химия, разработка новых материалов, задачи на оптимизацию, семплирование, квантовая динамика, поиск. Универсальность: полная, с ускорением относительно традиционных компьютеров. Вычислительная мощность: весьма высокая

Минимальный набор

Впрочем, для создания настоящего квантового компьютера понадобится не только комплект кубитов, но и каналы их взаимодействия. В обычном компьютере эту роль выполняют провода и электрические контакты, а в квантовом — эффект запутанности. Запутанные частицы имеют общие квантовые параметры: их можно разделить физически, но их поведение останется связанным, невзирая на расстояние. Кубиты в квантовом компьютере расположены не слишком далеко, однако именно запутанность связывает их в единую, согласованно реагирующую систему.

Кроме того, новому компьютеру необходимо записывать и считывать информацию. В принципе, это самое простое: для ввода-вывода можно использовать излучение, например лазерное или микроволновое, сфокусированное на отдельных кубитах, позволяющее «писать» и «читать» их состояние. Технически это довольно тонкая работа, которая требует дорогого оборудования, но делать это физики умеют уже давно. Куда труднее выполнить последнее требование: как можно надежнее изолировать кубиты от внешнего мира, чтобы удерживать их запутанность в течение времени, достаточного для вычислений и обмена данными.

Bristlecone Google

Последняя разработка группы Джона Мартиниса в исследовательском подразделении поисковой корпорации показывает пример нового подхода к проблеме коррекции ошибок, столь важной для квантовых вычислений. Кубиты расположены на микрочипе в шахматном порядке — так, что «белые» используются для логических операций, а «черные» — для контроля ошибок.

О том, насколько трудно сохранить квантовую природу большой и сложной системы, может рассказать сам кот Шредингера. Замысел этого мысленного эксперимента широко известен: помещенное в коробку животное оказывается одновременно живо и мертво, поскольку его судьба зависит от неопределенного состояния некоей частицы. До открытия коробки (измерения) параметры частицы находятся в суперпозиции двух состояний, а вместе с ними в суперпозиции находится и кот. Обычно этот эксперимент приводят как пример парадоксальной природы квантового мира, но, если подумать, он говорит еще и о другом.

Одновременно живых и мертвых котов не бывает как раз потому, что кот — это макроскопический объект. Он состоит из многих частиц, которые все время норовят вступить во взаимодействие с внешней средой и «сколлапсировать», потеряв неопределенность и перейдя в одно из возможных состояний. Точно так же и с компьютером: чем больше кубитов, тем он может быть мощнее, но при этом все сильнее напоминает шредингеровского кота, которому трудно сохранять свое квантовое состояние. Именно поэтому кубиты обязательно помещают в вакуумные камеры, для них создают хитрые схемы охлаждения и разрабатывают сложные методы коррекции ошибок.

Tangle Lake Intel

Помимо числа кубитов и использования в основе устройства сверхпроводящих антенн с джозефсоновскими переходами, о Tangle Lake не известно пока ничего конкретного.

Точка перегиба

Теперь, когда примерно ясно, что вообще имеется в виду под квантовым вычислителем и какие у него могут быть преимущества, становится понятно, что квантовые технологии не заменят старый добрый кремний ни завтра, ни в отдаленном будущем. Однако это вовсе не значит, что все разговоры о «квантовом превосходстве» — очередная утка. Да, сегодня известно лишь несколько вычислительных задач, которые квантовые компьютеры способны ускорить. Зато это ускорение не в 10 и не в 100 раз, а намного больше — чем сложнее задача, тем заметнее.

50Q IBM

50-кубитный квантовый компьютер от IBM был представлен в ноябре 2017 года, но подробностей о нем известно тоже немного. В частности, утверждается, что его время когерентности (в течение которого можно проводить вычисления) достигло рекордных для системы 90 микросекунд.

Решение многих таких задач уже требуется на практике. Например, алгоритм Шора позволяет за секунды взламывать самые современные шифры, а алгоритм Лова Гровера принципиально снижает сложность поиска в больших объемах данных. Не следует забывать и про квантовые расчеты, о которых изначально говорили Фейнман и Манин. По статистике, они занимают сегодня до 30−40% вычислительных ресурсов всех суперкомпьютеров. И по-видимому, именно эта область станет первой, которая почувствует «квантовый толчок» от создания новых машин. А это будет означать новые материалы, новые лекарства, новое понимание сверхпроводимости.

19Q Rigetti Computing

Главной особенностью 19-кубитного чипа называют его специализацию на машинном обучении. Система разработана для решения задач кластеризации данных, например при распознавании изображений.

Можно не сомневаться, что таких примеров будет все больше: спектр практических применений любого компьютера становится понятен только после появления подходящих для него алгоритмов, которые только предстоит разработать. Их создание — область настолько молодая, что, по словам одного исследователя, «можно написать на одной доске имена всех, кто ей занимается в мире». Специалистов катастрофически не хватает, особенно сейчас, когда в квантовую гонку включаются IT-гиганты, готовые переманивать сотрудников целыми лабораториями.

2000Q D-Wave

2000Q содержит 2048 кубитов, что формально делает ее самой сложной квантовой системой в мире. Однако архитектура D-Wave существенно отличается от других устройств и подходит для решения только очень узких задач. Многие эксперты сомневаются, что подход D-Wave вообще может иметь какой-то практический выигрыш от использования квантовых эффектов.

Наступление эры «квантового превосходства» нельзя сравнивать с выпуском первого персонального компьютера или мобильной революцией. Простые потребители не почувствуют никаких принципиальных изменений еще как минимум несколько лет. Но если говорить об индустрии, то она уже изменилась. Резкий интерес к постквантовой криптографии, создание такими гигантами, как IBM и Microsoft, платформ для разработки квантовых алгоритмов, миллиардные инвестиции — история квантовой революции уже пишется.

Таймлайн

До 1990: развитие квантовой механики, теоретические работы

1927

Вернер Гейзенберг формулирует принцип неопределенности.

1981

В лекции «Моделирование физики на компьютерах» Ричард Фейнман формулирует основы квантовых вычислений.

1985

Дэвид Дойч описывает систему универсального квантового компьютера для любых вычислений.

После 1990: практические попытки создания квантовых компьютеров. Начало активного финансирования исследований

1994

Питер Шор открывает квантовый алгоритм разложения целых чисел на множители, позволяющий взламывать современные криптосистемы.

1994

Петер Цоллер и Хуан Игнасио Сирак реализуют первую экспериментальную схему квантового компьютера, получив логический вентиль C-NOT.

1997 Алексей Китаев создает надежный метод коррекции ошибок при квантовых вычислениях.
1998

Первые двухкубитные компьютеры созданы в Оксфордском университете и IBM.

2001

Квантовый компьютер IBM проводит успешное разложение числа 15 по алгоритму Шора.

2008

Компания D-Wave заявляет о создании 28-кубитного устройства.

2016

IBM запускает облачный сервис Quantum Experience для удаленного доступа к квантовому вычислителю.

2017

Не менее четырех независимых групп докладывают о создании вычислителей с примерно полусотней кубит.

2018

Группа Джона Мартиниса анонсирует Bristlecone — квантовый компьютер на 72 кубитах с системой коррекции ошибок.

Российские ученые представили разработку, которая, по их словам, должна кардинально изменить жизнь человечества. Созданием квантовых компьютеров, способных работать в миллионы раз быстрее современных операционных систем, занимаются крупнейшие технологические корпорации мира. Но они уже признали победу коллег.

Это казалось фантастикой еще вчера - квантовые компьютеры, способные обогнать все существующие устройства. Они настолько мощные, что могут или открыть человечеству новые горизонты, или обрушить все системы безопасности, потому что смогут взломать их.

«Квантовый компьютер функционирующий, он гораздо страшнее атомный бомбы», - считает генеральный директор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.

В разработку вкладываются крупнейшие корпорации: Google, IBM, Microsoft, Alibaba. Но сегодня в центре внимания - Михаил Лукин, физик из Гарварда и один из основателей Российского квантового центра. Его команде удалось создать самый мощный на данный момент квантовый компьютер.

«Это одна из самых больших квантовых систем, которые были созданы. Мы входим в тот режим, где уже классические компьютеры не могут справится с вычислениями. Делаем маленькие открытия уже, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, мы даже до конца их не понимаем», - рассказывает профессор Гарвардского университета, сооснователь Российского квантового центра Михаил Лукин.

Все - из-за мощности таких устройств. Расчеты, которые на сегодняшнем суперкомпьютере займут тысячи лет, квантовый может сделать в один миг.

Как это работает? В обычных компьютерах информация и вычисления - это биты. Каждый бит - либо ноль, либо единица. Но квантовые компьютеры основаны на кубитах, а они могут находиться в состоянии суперпозиции, когда каждый кубит - одновременно и ноль, и единица. И если для какого-нибудь расчета обычным компьютерам нужно, грубо говоря, выстроить последовательности, то квантовые вычисления происходят параллельно, в одно мгновение. В компьютере Михаила Лукина таких кубитов - 51.

«Во-первых, он сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это больше чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49, потому что Google все время говорил, что сделает 49», - объясняет гендиректор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.

Создание самого мощного квантового компьютера пророчили ему. Джон Мартинес - руководитель крупнейшей в мире квантовой лаборатории корпорации Google. И свой 49-кубитный компьютер он планировал закончить только через несколько месяцев.

«22 кубита - это максимум, что мы смогли сделать, мы использовали все свое волшебство и профессионализм», - рассказывает он.

Мартинес и Лукин выступили на одной сцене - в Москве, на Четвертой международной квантовой конференции. Впрочем, соперниками ученые себя не считают.

«Неправильно думать об этом, как о гонке. Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов», - говорит глава лаборатории «Квантовый искусственный интеллект» компании Google Джон Мартинес.

Но для чего нам понадобятся квантовые компьютеры? Даже сами их создатели не знают наверняка. С их помощью могут быть разработаны совершенно новые материалы, сотни открытий в физике и химии. Квантовые компьютеры - пожалуй, единственное, что может приоткрыть тайну человеческого мозга и искусственного интеллекта.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесет. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры», - говорит директор Российского квантового центра Руслан Юнусов.

Один из первых компьютеров был создан в 40-х годах ХХ века и весил 27 тонн. Если сравнить с современными устройствами, то обычный смартфон по мощности - это как 20 000 таких машин. И это за 70 лет прогресса. Но если наступит эра квантовых компьютеров, уже наши потомки будут удивляться, как вообще пользоваться этим антиквариатом.

В ходе Международной квантовой конференции в Москве российский учёный Михаил Лукин представил самый мощный на сегодняшний день 51-кубитный квантовый компьютер. Число 51 было выбрано не случайно: Google уже долгое время работает над 49-кубитным квантовым компьютером, а потому обойти конкурента было для Лукина, как для азартного учёного, делом принципа.


«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Сами же кубиты, в количестве которых так неистово «соревнуются» учёные, - это вычислительный юнит, который одновременно представляет собой и ноль, и единицу, в то время как привычный бит - это либо одно, либо другое. Современные суперкомпьютеры выстраивают последовательности, а квантовые компьютеры, в свою очередь, проводят вычисления параллельно, в одно мгновение. Благодаря такому подходу вычисления, на которые сегодняшним суперкомпьютерам понадобятся тысячи лет, квантовый компьютер может осуществить моментально.

«Это одна из самых больших квантовых систем, которые были созданы, - рассказывает Михаил Лукин, профессор Гарвардского университета и сооснователь Российского квантового центра. - Мы входим в тот режим, где уже классические компьютеры не могут справиться с вычислениями. Делаем маленькие открытия, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, но до конца не понимаем».

Пока даже создатели мощнейших квантовых компьютеров не могут сказать наверняка, зачем человечеству понадобятся настолько мощные вычислительные машины. Возможно, с их помощью будут разработаны принципиально новые материалы. Могут быть совершены новые открытия на ниве физики или химии. Или, возможно, квантовые компьютеры помогут, наконец, полностью понять природу человеческого мозга и сознания.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесёт, - полагает Руслан Юнусов, директор Российского квантового центра. - Здесь можно привести пример транзистора. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры. А когда построили компьютеры, никто не представлял, как сильно изменится жизнь».

Loading...Loading...