Прозрачный алюминий - две версии, две технологии, два открытия - миростроительство — жж. Прозрачный алюминий Наука. Прозрачный алюминий

Совместные усилия специалистов из нескольких университетов позволили разработать новейшую схему переработки оксинитрида алюминия. Для изготовления прозрачного материала исследователи использовали технологию спарк-плазменного спекания.

Данная методика представляет собой усовершенствованный и некоторым образом модифицированный метод горячего прессования. Он подразумевает применение электрического тока, который пропускается через пресс-форму и применяемое сырье. При этом внешний нагреватель не применяется. Благодаря импульсному току осуществляется быстрый нагрев материала с минимальной продолжительностью рабочего цикла.

Один из создателей прозрачного алюминия, аспирант ИЯФиТ Н. Рубинковский указывает, что полученный ALON обладает высокими прочностными характеристиками относительно современных керамик. Его можно сравнить с алюмоиттриевым гранатом или фианитом. По ударной вязкости он превосходит кварцевое железо, шпинель и другие материалы с прозрачными качествами.

Все, кто смотрел легендарный «Star Track», помнят, что вещество с подобными свойствами присутствовало в 4 части фильма. Прозрачным алюминием были заполнены оконные проемы космического корабля. Материалы с такими качествами уже давно применяются в технике. Оксинитрид алюминия примерно в 4 раза устойчивей к царапинам, чем обычное алюмосиликатное стекло. Он способен выдержать воздействие высокой температуры, достигающей показателей 2100°С.

Современное стрелковое оружие и артиллерия малого калибра с каждым днем усовершенствуется, что ставит вопрос о разработке новых средств защиты. Особенно остро данная проблема стоит для броневых материалов с прозрачными свойствами. В этом случае актуальными являются поликристаллическая керамика, или изготовленная из оксинитрида алюминия. Из представленных материалов можно получить изделия практически любой формы, применяя традиционную технологию формировки и спекания.

ALON может использоваться для обеспечения как военных потребностей, так и для промышленности. Например, из него производят прозрачную броню и окна ракет, посылаемых в космос.

Подробнее на:

Интернет - объединение предприятий Российской промышленности:

https://www.rosprom.org/news/metallurgy/rossiyskie_uchenye_razrabotali_tekhnologiyu_polucheniya_prozrachnogo_alyuminiya/

Видео: Алюминий

Новость о том, что ученые изобрели «прозрачный алюминий» (Transparent Aluminum Armor), не нова. Однако говорить о том, что много кто знает об этой новости еще рано, поэтому сегодня почитайте об этом интересном и получившем значительное практическое применение открытии.

Открытие получило название AION или оксинитрид алюминия и является соединением алюминия, кислорода и азота, представляя собой прозрачную керамическую твердую массу, которая в четыре раза прочнее закаленного стекла. На данный момент выпускается под торговой маркой ALON.

Интересно, что кварц-оксинитрид алюминия, призван заменить довольно привычное пуленепробиваемое стекло. Однако на этом его функции не заканчиваются. Отполировав ALON, из него можно сделать стекло для иллюминатора, более того, его невозможно поцарапать привычными способами, а так же обладает отличной удароустойчивостью. При всех этих показателях, ALON вдвое легче и тоньше чем обычное бронестекло. Таким образом, ALON буквально ворвался сразу в несколько ниш и с каждым годом улучшает свои позиции.

Важно и то, что процесс производства ALON-а не является технологически «замудренным», что облегчает задачу производителей. Однако и дома его создать не получится, впрочем, что бы вы понимали, как происходит весь процесс создания оксинитрида алюминия, расскажем о нем.

1. Способ получения литого оксинитрида алюминия в режиме горения, включающий приготовление реакционной смеси исходных компонентов, содержащей оксид хрома VI, оксид алюминия, алюминий и нитрид алюминия, помещение реакционной смеси в реактор СВС в форме из тугоплавкого материала, выполненной из кварца, графита или нержавеющей стали, воспламенение смеси с последующим реагированием ее компонентов в режиме горения в газовой среде азота, или смеси азота с воздухом, или смеси азота с аргоном под давлением 0,1-10 МПа, после завершения синтеза целевой продукт в виде слитка оксинитрида алюминия отделяют от слитка алюминида хрома, при этом реакционную смесь готовят при следующем соотношении компонентов, мас.%

  • Оксид хрома VI 37,3-41,0
  • Алюминий 31,0-34,0
  • Оксид алюминия 22,7-25,0
  • Нитрид алюминия до 9,0

2. Способ по п.1, отличающийся тем, что между реакционной смесью компонентов и стенкой формы помещают функциональный слой из порошка оксинитрида алюминия.

На данный момент ALON начали использовать более многогранно, так, например, компаний Microsoft, занимаясь разработкой «умных часов», в корпусе своей разработки применяет именно оксинитрид алюминия. Так что, кто знает, быть может, даже изготовление алюминиевых конструкций с использованием ALON-а уже не за горами, однако о подобном можно мечтать лишь в случае снижения стоимости материала.

Инженеры из исследовательской лаборатории флота США разработали процесс изготовления прочной и недорогой замены стекла. Прозрачный материал делают при помощи низкотемпературного спекания из искусственно полученных кристаллов шпинели.

Шпинель – это смешанный оксид магния и алюминия, минерал, встречающийся в природе. В естественном виде он бывает разных цветов. Например, красная шпинель неотличима на глаз от рубина, поэтому раньше эти два минерала путали между собой. Одна из знаменитых драгоценностей британской короны, Рубин Чёрного Принца , на самом деле – шпинель.

Этот материал очень твёрдый, он способен сопротивляться ударным нагрузкам и истиранию при воздействии дождя, солёной воды или песка. Кроме того, он пропускает инфракрасное излучение, поэтому может пригодиться при изготовлении различных приборов. В отличие от стекла, материал не трескается по всей поверхности – вместо этого при ударном воздействии от него просто откалывается небольшой кусок. Конечное изделие можно полировать и отшлифовывать.

Горячий пресс

Ранее инженеры пытались получить этот материал при помощи высоких температур (2000 градусов и более). Но этот процесс был как дорогим из-за энергозатрат, так и неэффективным – необходимость отделять готовый материал от поверхности тигеля приводила к появлениям дефектов. При спекании используется горячий пресс, который делает из порошковой заготовки конечное поликристаллическое изделие.

Попытки изготовить большие панели из шпинели спеканием делались и раньше. Однако материал получался мутным, с небольшими островками прозрачности. Инженерам удалось усовершенствовать качество продукта, добавив в сырьё порядка 1% фторида лития , который, расплавляясь, работает как смазка, и позволяет кристаллам шпинели правильно выстраиваться друг относительно друга.


Сырьё для производства доступно в изобилии, что делает себестоимость изделий минимальной. Благодаря простоте технологии, из материала можно делать изделия любой формы. Возможности использования обширны: изогнутые окна (например, иллюминаторы для самолётов), линзы для приборов, стёкла часов, экраны смартфонов (прочнее, чем gorilla glass), линзы для камер и биноклей. Военные интересуются использованием этого материала в качестве прозрачной брони – по сравнению с современными пуленепробиваемыми стёклами вес готового изделия будет как минимум в 2 раза меньше.

источники

http://geektimes.ru/post/249766/

http://www.sciencedebate2008.com/unusual-aluminum/

http://www.findpatent.ru/patent/211/2117631.html

Еще несколько интересных и необычных технологий: вот например Асфальт без луж. Есть ли перспективы? , а вот как сваривают рельсы железной дороги . Напомню вам, как может работать компьютер в аквариуме и будут ли у нас пластиковые дороги. Оригинал статьи находится на сайте

Оксинитрид алюминия (или AlON) представляет собой керамику, состоящую из алюминия, кислорода и азота. Материал является оптически прозрачным (> 80%) в ультрафиолетовом, видимом и полуволновом диапазонах электромагнитного спектра. За рубежом изготавливается корпорацией Surmet под брендом ALON. Недавно российские ученые разработали технологию получения прозрачного алюминия, несколько отличающуюся от импортных аналогов.

Описание

Разработка уникального сплава открыла новые перспективы в оборонной промышленности, науке и строительстве. Согласно официальным данным, ALON:

  • в 4 раза прочнее, чем закаленное ;
  • на 85% тверже сапфира;
  • почти на 15% надежнее шпинели, изготавливаемой из алюмината магния.

Кстати, минерал шпинель - прямой конкурент прозрачного алюминия и уступает оксинитриду по ряду параметров.

ALON является самым твердым доступным в продаже представителем поликристаллической прозрачной керамики. Сочетание оптических и механических свойств делает этот материал ведущим кандидатом на легкие высокоэффективные бронированные изделия, такие как пуленепробиваемые и взрывозащищенные стекла, элементы для инфракрасных оптических систем. Также из оксинитрида алюминия получают прозрачные ударопрочные окна, иллюминаторы, плиты, купола, стержни, трубки и другие изделия с использованием традиционных технологий обработки керамических порошков.

Механические свойства

Оксинитрид алюминия обладает выдающимися характеристиками:

  • 334 ГПа.
  • Модуль сдвига: 135 ГПа.
  • Коэффициент Пуассона: 0,24.
  • Твердость по методу Кнупа: 1800 кг/мм 2 при нагрузке 0,2 кг.
  • Сопротивление разрушению: 2 МПа·м 1/2 .
  • Прочность на изгиб: 0,38-0,7 ГПа.
  • Прочность на сжатие: 2,68 ГПа.

Оптические и тепловые свойства

При тестировании прозрачного алюминия получены следующие показатели:

  • Теплоемкость: 0,781 Дж/К.
  • Теплопроводность: 12,3 Вт/(м·K).
  • Коэффициент теплового расширения: 4,7×10 -6 /°С.
  • Диапазон прозрачности: 200-5000 нм.

ALON также устойчив к радиации и повреждениям различными кислотами, щелочами и водой.

Получение

Прозрачный оксинитрид алюминия изготавливают методом порошкового спекания наподобие других В то время как ВМС США заняты разработкой нового пуленепробиваемого материала под названием искусственный шпинель, компания Surmet Corporation уже выпускает собственную версию «бронестекла» под названием ALON.

Разработанный в лабораториях фирмы Raytheon специальный порошок закладывают в формы и выдерживают при очень высоких температурах. Состав смеси может незначительно варьироваться: содержание алюминия составляет примерно от 30% до 36%, что незначительно влияет на характеристики (расхождение составляет всего 1-2%).

Процесс нагревания вызывает быстрое разжижение и охлаждение порошка, оставляя молекулы свободно расположенными, как будто они все еще находятся в жидкой форме. Именно эта кристаллическая структура обеспечивает прозрачному алюминию уровень прочности и стойкости к царапинам, сравнимый с сапфиром.

Изготовленные изделия подвергаются термической обработке (уплотнению) при повышенных температурах с последующим шлифованием и полировкой до достижения прозрачности. Материал может выдерживать температуры до 2100 °С в инертных газах. Шлифовка и полировка существенно улучшают ударопрочность и другие механические свойства.

Отечественный аналог

Российские ученые создали прозрачный алюминий в 2017 году. По заверению специалистов из НИЯУ «МИФИ», технология производства была значительно улучшена. При изготовлении компактов применяется методика спарк-плазменного спекания.

В отличие от зарубежных коллег, отечественные разработчики пропускают электроразряд не через внешний нагревательный элемент, а непосредственно через пресс-форму. Ученые заявляют, что отечественная прозрачная броня по прочностным характеристикам сравнима с фианитом, но при этом обладает высокой ударной вязкостью.

Сравнение алюминиевой брони с пуленепробиваемым стеклом

Традиционное пуленепробиваемое стекло состоит из нескольких слоев поликарбоната, зажатых между двумя слоями стекла. Аналогично прозрачная алюминиевая броня состоит из трех слоев:

  • наружного слоя - оксинитрида алюминия;
  • среднего слоя - стекла;
  • заднего слоя - полимерной подложки.

Однако сходство на этом заканчивается. Алюминиевая броня может остановить те же самые пули от малокалиберного оружия, что и традиционное пуленепробиваемое стекло, но она будет все еще прозрачной даже после выстрела без характерных трещин. Кроме того, прочность ALON гораздо выше.

Броня из оксинитрида алюминия может быть изготовлена практически любой формы. Она не боится ни песка, ни гравия, ни пыли. Стойкость к очень высокая. Несмотря на великолепные свойства прозрачного алюминия, этот материал не получил широкого использования. Самый большой сдерживающий фактор - стоимость (в 3-5 раз дороже традиционного пуленепробиваемого стекла). ALON в настоящее время используется главным образом для линз наблюдательных приборов и датчиков ракет.

Новость о том, что ученые изобрели «прозрачный алюминий» (Transparent Aluminum Armor), не нова. Однако говорить о том, что много кто знает об этой новости еще рано, поэтому сегодня почитайте об этом интересном и получившем значительное практическое применение открытии.


Открытие получило название AION или оксинитрид алюминия и является соединением алюминия, кислорода и азота, представляя собой прозрачную керамическую твердую массу, которая в четыре раза прочнее закаленного стекла. На данный момент выпускается под торговой маркой ALON.


Интересно, что кварц-оксинитрид алюминия, призван заменить довольно привычное пуленепробиваемое стекло. Однако на этом его функции не заканчиваются. Отполировав ALON, из него можно сделать стекло для иллюминатора, более того, его невозможно поцарапать привычными способами, а так же обладает отличной удароустойчивостью. При всех этих показателях, ALON вдвое легче и тоньше чем обычное бронестекло. Таким образом, ALON буквально ворвался сразу в несколько ниш и с каждым годом улучшает свои позиции.

Важно и то, что процесс производства ALON-а не является технологически «замудренным», что облегчает задачу производителей. Однако и дома его создать не получится, впрочем, что бы вы понимали, как происходит весь процесс создания оксинитрида алюминия, расскажем о нем.


1. Способ получения литого оксинитрида алюминия в режиме горения, включающий приготовление реакционной смеси исходных компонентов, содержащей оксид хрома VI, оксид алюминия, алюминий и нитрид алюминия, помещение реакционной смеси в реактор СВС в форме из тугоплавкого материала, выполненной из кварца, графита или нержавеющей стали, воспламенение смеси с последующим реагированием ее компонентов в режиме горения в газовой среде азота, или смеси азота с воздухом, или смеси азота с аргоном под давлением 0,1-10 МПа, после завершения синтеза целевой продукт в виде слитка оксинитрида алюминия отделяют от слитка алюминида хрома, при этом реакционную смесь готовят при следующем соотношении компонентов, мас.%


  • Оксид хрома VI 37,3-41,0

  • Алюминий 31,0-34,0

  • Оксид алюминия 22,7-25,0

  • Нитрид алюминия до 9,0

2. Способ по п.1, отличающийся тем, что между реакционной смесью компонентов и стенкой формы помещают функциональный слой из порошка оксинитрида алюминия.

На данный момент ALON начали использовать более многогранно, так, например, компаний Microsoft, занимаясь разработкой «умных часов», в корпусе своей разработки применяет именно оксинитрид алюминия. Так что, кто знает, быть может, даже изготовление алюминиевых конструкций с использованием ALON-а уже не за горами, однако о подобном можно мечтать лишь в случае снижения стоимости материала.

Инженеры из исследовательской лаборатории флота США разработали процесс изготовления прочной и недорогой замены стекла. Прозрачный материал делают при помощи низкотемпературного спекания из искусственно полученных кристаллов шпинели.




Еще несколько интересных и необычных технологий: вот например Асфальт без луж. Есть ли перспективы? , а вот как сваривают рельсы железной дороги . Напомню вам, как может работать компьютер в аквариуме и будут ли у нас пластиковые дороги.

Наука. Прозрачный алюминий

Ученые из Оксфордского университета создали прозрачную форму алюминия, бомбардируя металл самым мощным рентгеновским лазером. До сих пор прозрачный алюминий описывался только в научной фантастике.

В реальности же экзотичная форма материала станет подспорьем как для ядерной энергетики, так и для понимания того, что именно происходит в ядрах огромных планет.

Авторы эксперимента взяли кусочек тонкой алюминиевой фольги и направили на него лазер, основная энергия которого генерировалась в рентгеновском диапазоне электромагнитного излучения. Воздействие равнялось приблизительно 10 млн ГВт энергии на квадратный сантиметр и привело к феноменальному результату.

При обычных температуре и давлении алюминий - это решетка атомов с огромным количеством свободных электронов. Краткое пульсирование лазера выбило по электрону из каждого алюминиевого атома, позволив фотонам проходить прямо через материал и сделав алюминий практически невидимым для ультрафиолетового излучения. Хотя металл нагрелся до чрезвычайно высокой температуры, он сохранил свою жесткость: это явление, считают ученые, аналогично тому, что происходит в ядрах гигантских планет вроде Юпитера.

«То, что мы создали, абсолютно новая форма вещества, которую никто еще не видел, - комментирует результат эксперимента один из его авторов, профессор физики Джастин Уорк. - Прозрачный алюминий - это только начало. Физические свойства материала, который мы создали, схожи с условиями внутри больших планет. Мы надеемся, что, изучая его, сможем лучше понять то, что происходит во время возникновения «миниатюрных звезд», созданных мощными лазерными имплозиями (внутренние взрывы). Однажды человек научится использовать энергию от такого процесса здесь, на Земле».

Открытие стало возможным благодаря созданию нового источника излучения, в десять миллиардов раз превосходящего по яркости любой синхротрон в мире (например, такой, как британский «Алмазный источник света», генерирующий лучи света в диапазонах от инфракрасного до рентгеновского). Эта мощная лазерная установка, называемая FLASH laser, располагается в немецком Гамбурге и производит чрезвычайно краткие вспышки мягкого рентгеновского излучения, каждая из которых мощнее электростанции, обеспечивающей электричеством целый город. При поддержке коллег из других стран ученые из Оксфорда сосредоточили всю эту энергию в пятне, диаметр которого тоньше 1/20 ширины человеческого волоса. Именно при такой высокой интенсивности лазерного излучения алюминий и стал прозрачным.

Пока что эффект «невидимости» длился в течение чрезвычайно краткого периода - приблизительно 40 фемтосекунд, однако это демонстрирует, что такое экзотическое состояние вещества в принципе может быть создано на практике.

«Особенно замечательным в нашем эксперименте является то, что мы превратили обычный алюминий в этот экзотический новый материал в один этап, применив для этого очень сильный лазер. В течение краткого периода образец выглядит и ведет себя как совершенно иной материал, как если бы мы трансформировали каждый алюминиевый атом в кремний. Для нас это практически то же самое, как если бы нам удалось при помощи света получить чистое золото», - добавляет профессор Уорк.

Исследователи полагают, что использованный ими подход идеален для создания и изучения экзотических состояний веществ. Его значение многопланово и очень важно для планетарной науки, астрофизики и ядерной энергетики.

Команда исследователей надеется продолжить изучение свойств горячего плотного вещества, планируя в будущем применять для этой цели новые, еще более сильные рентгеновские лазеры.


Loading...Loading...