Принцип работы эвл. Электровакуумные приборы: принцип работы, примеры. Лампочки накаливания Томаса Эдисона Вакуумные приборы и их применение

ЭЛЕКТРОВАКУУМНЫЕ ПРИБОРЫ -приборы, в к-рых перенос тока осуществляется электронами или ионами, движущимися между электродами через высокий или газ внутри газонепроницаемой оболочки.

Э. п. разделяются на два больших класса: электронные приборы и ионные приборы .В электронных приборах перенос электрич. в междуэлектродном пространстве обусловливается движением эмитированных катодом свободных электронов в высоком вакууме. В газоразрядных (ионных) приборах в переносе электрич. заряда участвуют как электроны, так и тяжёлые заряж. частицы - ионы, образующиеся при взаимодействии электронов, движущихся в электрич. поле, с атомами газа, заполняющего прибор.

Одной из особенностей прохождения тока в Э. п. является нелинейная зависимость величины тока, протекающего через прибор, от величины приложенного - нелинейная вольт-амперная характеристика , к-рая для электронных приборов во мн. случаях может быть описана показательной ф-цией. Характеристики газоразрядных приборов имеют разнообразные виды: растущие, падающие, разрывные и др. Мн. виды Э. п. обладают односторонней проводимостью - условия прохождения тока резко изменяются при изменении полярности приложенного напряжения.

Величиной проходящего через Э. п. тока можно управлять в широких пределах - от "запирания" (нуля) до максимально возможного для данного прибора значения, причём практически без затраты энергии.

Электронные Э. п. практически безынерционны, т. е. изменение тока, протекающего через прибор, происходит почти мгновенно при изменении приложенного напряжения. Это определяется тем, что электроны, движущиеся в электрич. поле в свободном пространстве (высоком вакууме), могут приобретать скорость, близкую к : при прохождении в ускоряющем поле с разностью потенциалов 100 кВ скорость электрона составляет ~(2/3)с . При таких скоростях время пролёта электроном междуэлектродного пространства составляет <=10 -10 -10 -9 с, что позволяет считать Э. п. приборами мгновенного действия.

Большинство Э. п. является преобразователями информации (сигналов) - и по виду преобразуемой энергии, и по параметрам преобразования.

По виду преобразуемой энергии Э. п. разделяются на группы: преобразующие электрич. сигналы в электрические с др. параметрами; преобразующие электрич. сигналы в оптические (световые); оптические - в электрические; оптические-в оптические с др. параметрами.

Э. п. могут преобразовывать величину (амплитуду) сигнала, осуществляя усиление напряжения, тока, мощности, яркости оптич. изображения и т. п. в весьма широком диапазоне изменения величины преобразуемого сигнала, напр. по мощности - от долей Вт до десятков МВт. Э. п. могут преобразовывать сигналы по частоте, осуществляя генерирование ВЧ- и СВЧ-колебаний, детектирование, выпрямление перем. тока (также в очень широком диапазоне- от нуля до десятков ГГц). Ряд Э. п. применяется для переключения (коммутации) электрич. цепей больших мощностей и высокого напряжения с помощью маломощных управляющих сигналов.

К Э. п., преобразующим электрич. сигналы в электрические с др. параметрами, относятся электронные лампы , электронные приборы СВЧ-диапазона (клистроны, магнетроны, лампа бегущей волны, лампа обратной волны) , запоминающие электронно-лучевые трубки, нек-рые газоразрядные приборы (ртутные вентили, газотроны, тиратроны дугового и ). Приборами, преобразующими электрич. сигналы в оптические, являются приёмные электронно-лучевые трубки (осциллографич., индикаторные, кинескопы), электронно-световые индикаторы напряжения, лампы накаливания, газоразрядные источники света, в т. ч. люминесцентные лампы (см. ) . Преобразование оптических (световых) сигналов в электрические осуществляется вакуумными фотоэлементами , передающими телевиз. трубками (диссекторами, суперор-тиконами, видиконами и др.). Преобразование оптич. сигналов в оптические с др. параметрами происходит с помощью электронно-оптических преобразователей , усилителей яркости, усилителей рентгеновского изображения.

К Э. п. относятся также стабилизаторы тока (бареттеры), газоразрядные стабилизаторы напряжения (стабилитроны) и механотроны - приборы, преобразующие меха-нич. параметры (изменение расстояния между электродами, давление, ускорение, амплитуду и частоту вибраций) в электрич. сигналы.

Лит.: Тягунов Г. А., Электровакуумные и , М.- Л., 1962; Электронные приборы, под ред. Г.Г. Шишкина, 4 изд., М., 1989; Кацнельсон Б. В., Калугин A.M., Ларионов А. С., Электровакуумные электронные и газоразрядные приборы. Справочник, 2 изд., М., 1985.

А. А. Жигарев .

Сегодня, в век развития нанотехнологий, повсеместной миниатюризации различных радиоэлектронных устройств, многие считают, что электровакуумные лампы безнадежно устарели и их применение не рентабельно, да и негде их использовать. Надо сказать, что это в корне ошибочная точка зрения. Конечно же, ЭВЛ уже не имеют столь важной роли, как раньше, но все-таки, они не только все еще применяются, но в некоторых отраслях, в некоторых приборах они просто незаменимы.

Принцип работы ЭВЛ

Электровакуумная лампа является электровакуумным прибором , который работает по следующему принципу: в замкнутом вакуумном или разреженном газовом пространстве создают интенсивный поток из электронов. Управляют этим потоком при помощи электрического или магнитного поля. Электроток, идущий через вакуум, имеет множество полезных функций, таким образом, электронная лампа генерирует, усиливает электро колебания разной частоты (звуковые сверхвысокие частоты, радиоволны). Конструкционно радиолампа состоит из катода, анода и сетки.

Катод

Отрицательный электрод, который для обеспечения эмиссии с катода электронов, дополнительно нагревают, а для того чтобы эмиссия проходила легче, на катоды наносят тончайший слой тория, бария. Металлический катод, использующийся в лампах большой мощности, производят из вольфрама.

Анод

Является положительным электродом, может иметь форму пластины, но обычно производят цилиндрической формы или в виде параллелепипеда. Для изготовления используют никель, молибден, но могут быть аноды танталовые или графитовые.

Сетка

Сетка разделяет анод и катод, предохраняя последний от перегрева. Сетка бывает в виде решетки или же спирали (чаще).

Немного истории

Возникновение электротока, текущего в вакууме, было открыто Томасом Эдисоном (1883 год), но в те времена это было неактуально, применения данному эффекту не нашлось. Но уже к 1905 году Джон Флеминг создал электронную лампу (диод), которая преобразовывала переменный ток в постоянный. Состояла лампа из двух металлических электродов: анода и катода, заключенных в стеклянный баллон. Затем, после экспериментов с простой лампой, Ли де Форестом был введен третий элемент лампы – сетка. Впоследствии, ЭВЛ усовершенствовалась с целью улучшения характеристик прибора.

С начала двадцатого века и до середины пятидесятых годов были разработаны и другие электровакуумные приборы, принцип действия которых был основан на использовании потока электронов: магнетроны, клистроны. Но эти устройства имели мало общего с ЭВЛ, хотя, зачастую их и относят к одному классу электровакуумных приборов.

Применение

С начала пятидесятых годов и вплоть до девяностых электровакуумные лампы применялись практически во всех областях радиоэлектронной, технической промышленности. Без них невозможно было представить себе телевизоры, радиоприемники, промышленное и другое оборудование, и, конечно же, первые компьютеры и вычислительные машины. Со временем, при развитии радиоэлектроники, точного приборостроения, лампы практически утратили свою актуальность и их перестали использовать. Но все-таки, в некоторых отраслях невозможно и до сих пор обходиться без ЭВЛ, потому как только вакуумная лампа позволяет приборам работать по заданным параметрам, в заданной среде, обеспечивая нужные характеристики.

  • Военно-промышленный комплекс не может обходиться без ЭВЛ, так как исключительно вакуумная лампа устойчива к электромагнитным импульсам. Порой, в одном военном аппарате содержится до сотен ЭВЛ.
  • Авиа и ракетостроение. Многие полупроводниковые материалы, РЭК не способны работать в условиях высокой радиации, в космосе, где существует естественный вакуум. И в этом случае на помощь приходит старая, испытанная электровакуумная лампа. Некоторые типы ЭВЛ помогают повысить надежность и долговечность космических ракет и спутников. Ламповые устройства могут работать при чрезвычайно высоких температурах и высоком уровне радиации.
  • Профессиональная звуковая аппаратура. Для получения звука качества «HI End» большинство компаний применяют ЭВЛ. Можно с уверенностью констатировать, что электровакуумная лампа совершенно не устарела и не ушла в забвение. Конечно, она немного изменила свой облик, но все еще имеет широкое применение в особо важных отраслях.

Электровакуумные приборы (ЭВП)

приборы для генерации, усиления и преобразования электромагнитной энергии, в которых рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы жёсткой газонепроницаемой оболочкой. К ЭВП относятся лампы накаливания (См. Лампа накаливания), вакуумные Электронные приборы (в которых поток электронов проходит в вакууме), газоразрядные электронные приборы (в которых поток электронов проходит в газе).

Лампы накаливания - наиболее массовый вид ЭВП (в 70-х гг. 20 в. ежегодный мировой выпуск составляет около 10 млрд. штук). Удаление воздуха из баллона лампы предотвращает окисление нити накала кислородом. Для уменьшения испарения накалённой нити лампы накаливания некоторых типов после удаления воздуха наполняют инертным газом. Это позволяет повысить рабочую температуру нити накала и тем самым - световую отдачу ламп без изменения срока их службы. Присутствие инертного газа не влияет на процесс преобразования подводимой к лампе электрической энергии в световую.

Вакуумные электронные приборы изготовляют с таким расчётом, чтобы в рабочем режиме давление остаточных газов внутри баллона составляло 10 -6 -10 -10 мм рт. ст. При такой степени разрежения ионы остаточных газов не влияют на траектории электронов и шумы, создаваемые потоком этих ионов при их движении к катоду, достаточно малы. Такие ЭВП охватывают следующие классы приборов. 1) Электронные лампы (См. Электронная лампа) - Триод ы, Тетрод ы, Пентод ы и т. д.; предназначены для преобразования энергии постоянного тока в энергию электрических колебаний с частотой до 3․10 9 гц. Основные области применения электронных ламп - радиотехника, радиосвязь, радиовещание, телевидение. 2) ЭВП СВЧ - Магнетрон ы и Магнетронного типа приборы , пролётные и отражательные Клистрон ы, лампы бегущей волны (См. Лампа бегущей волны) и лампы обратной волны (См. Лампа обратной волны) и т. д.; предназначены для преобразования энергии постоянного тока в энергию электромагнитных колебаний с частотами от 3․10 8 до 3․10 12 гц. ЭВП СВЧ используются главным образом в устройствах радиолокации, телевидения (для передачи телевизионных сигналов по линиям радиорелейной связи, спутниковым линиям), СВЧ радиосвязи, телеуправления (например, ИСЗ и космическими кораблями). 3) Электроннолучевые приборы - осциллографические электроннолучевые трубки (См. Осциллографическая электроннолучевая трубка), Кинескоп ы, запоминающие электроннолучевые трубки (См. Запоминающая электроннолучевая трубка) и т. д.; предназначены для различного рода преобразований информации, представленной в форме электрических или световых сигналов (например, визуализации электрических сигналов, преобразования двумерного оптического изображения в последовательность телевизионных сигналов и наоборот). 4) Фотоэлектронные приборы - передающие телевизионные трубки (См. Передающая телевизионная трубка), фотоэлектронные умножители (См. Фотоэлектронный умножитель), вакуумные Фотоэлемент ы; служат для преобразования оптического излучения в электрический ток и применяются в устройствах автоматики, телевидения, астрономии, ядерной физики, звукового кино, факсимильной связи и т. д. 5) Вакуумные индикаторы - электронносветовые индикаторы (См. Электронносветовой индикатор), цифровые индикаторные лампы (См. Цифровая индикаторная лампа) и др. Работа индикаторных ламп основана на преобразовании энергии постоянного тока в световую энергию. Применяются в измерительных приборах, устройствах отображения информации, радиоприёмниках и т. д. 6) Рентгеновские трубки (См. Рентгеновская трубка); преобразуют энергию постоянного тока в рентгеновские лучи. Применяются: в медицине - для диагностики ряда заболеваний; в промышленности - для обнаружения невидимых внутренних дефектов в различных изделиях; в физике и химии - для определения структуры и параметров кристаллических решёток твёрдых тел, химического состава вещества, структуры органических веществ; в биологии - для определения структуры сложных молекул.

Р. Ф. Коваленко.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Электровакуумные приборы" в других словарях:

    Приборы, в к рых перенос тока осуществляется электронами или ионами, движущимися между электродами через высокий вакуум или газ внутри газонепроницаемой оболочки. Э. п. разделяются на два больших класса: электронные приборы и ионные приборы. В… … Физическая энциклопедия

    - (ЭВП) служат для различного рода преобразований электромагнитной энергии (генерации, усиления и т. д.). К ЭВП относятся: вакуумные электронные приборы (электронные лампы, магнетроны, клистроны, электронно лучевые приборы, рентгеновские трубки и т … Большой Энциклопедический словарь

    - (ЭВП), электронные приборы, в которых рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы газонепроницаемой (вакуумно плотной) оболочкой. Работа основана на взаимодействии потока электронов, испускаемых катодом, с… … Современная энциклопедия

    Приборы, принцип действия к рых обусловлен движением эл нов в высоком вакууме. К Э. п. относятся электронные лампы (выпрямительные, генераторные, усилительные, смесительные, индикаторные и др.), электронные приборы СВЧ (клистрон, магнетрон,… … Физическая энциклопедия

    ЭЛЕКТРОВАКУУМНЫЕ ПРИБОРЫ - электротехнические приборы, в которых электрический ток обусловлен электронным потоком, двигающимся в высоком вакууме (см. (1)). К Э. п. относятся: электронные лампы (выпрямительные, генераторные, усилительные, смесительные, индикаторные и др.),… … Большая политехническая энциклопедия

    - (ЭВП), служат для различного рода преобразований электромагнитной энергии (генерации, усиления и т. д.). К ЭВП относятся: вакуумные электронные приборы (электронные лампы, магнетроны, клистроны, электронно лучевые приборы, рентгеновские трубки… … Энциклопедический словарь

    - (ЭВП), электронные приборы, в которых рабочее пространство освобождено от воздуха и защищено от окружающей среды газонепроницаемой (вакуумно плотной) оболочкой. Служат для различного рода преобразований электромагнитной энергии (генерации,… … Энциклопедия техники

    - (ЭВП) электронные приборы, в к рых рабочее пространство освобождено от воздуха (давление остаточных газов обычно не выше 100 мкПа) и защищено от окружающей атмосферы газонепроницаемой (вакуумно плотной) оболочкой; работа осн. на взаимодействии… … Большой энциклопедический политехнический словарь

    - (ЭВП), служат для разл. рода преобразований эл. магн. энергии (генерации, усиления и т.д.). К ЭВП относятся: вакуумные электронные приборы (электронные лампы, магнетроны, клистроны, электронно лучевые приборы, рентгеновские трубки и т.д.),… … Естествознание. Энциклопедический словарь

    Электровакуумный прибор устройство, предназначенное для генерации, усиления и преобразования электромагнитной энергии, в котором рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы непроницаемой оболочкой. К таким… … Википедия

Книги

  • Электроника. Учебник для бакалавров , Шишкин Г.Г. , Учебник охватывает все разделы современной электроники. Рассмотрены полупроводниковые и электровакуумные приборы сверхвысоких частот с динамическим управлением, газоразрядные приборы,… Категория:

Определение . Электровакуумными называют приборы, принцип работы которых основан на использовании электрических явлений в газах или вакууме, происходящих в рабочем пространстве, изолированном от окружающей среды газонепроницаемой оболочкой (баллоном).

Электровакуумные и газоразрядные приборы выполняются в виде стеклянного, керамического или металлического баллона, внутри которого в условиях высокого вакуума или инертного газа размещаются электроды: катод, анод, сетки. Катод является излучателем (эмиттером) свободных электронов, анод - собирателем (коллектором) носителей заряда. С помощью сеток или управляющих электродов осуществляется управление анодным током.

Для того, чтобы получить представление об электровакуумных и газоразрядных приборах используемых в авиационном РЭО рассмотрим их классификацию.

Классификация и условное графическое обозначение

1. По количеству электродов электронные приборы делятся на двухэлектродные (электровакуумные диод), трехэлектродные (электровакуумный триод), и многоэлектродные лампы.

Рис. 1.

Электровакуумный диод - это двухэлектродная лампа, состоящая из катода и анода. Если напряжение на аноде положительное, относительно катода, то электроны, эмитируемые катодом, движутся к аноду, создавая анодный ток. При отрицательном напряжении на аноде тока нет, следовательно, диод проводит только в одном направлении. Это свойство диода определяет его основное назначение - выпрямление переменного тока. Условное графическое обозначение электровакуумного диода представлено на рис. 1.

Электровакуумный триод - это трехэлектродная лампа, у которой между анодом и катодом расположена сетка. Сетка предназначена для регулирования тока анода. Напряжение на сетке изменяет поле между анодом и катодом и таким образом влияет на ток анода. Если напряжение на сетке отрицательно по отношению к катоду, то она оказывает тормозящие действие на электроны, эмитируемые катодом, в результате анодный ток уменьшается. При положительном напряжении на сетке она оказывает ускоряющее действие на электроны, увеличивая анодный ток. При этом часть электронов попадает на сетку создавая сеточный ток. Следовательно, сетка является управляющим электродом, напряжение на котором позволяет изменять ток анода.

Условное графическое обозначение электровакуумного триода приведено на рис. 2.

Рис. 2.

Для увеличения влияния на ток анода сетка располагается ближе к катоду. При отрицательном напряжении на сетке ток в ней практически отсутствует.

Рис. 3. Условное графическое обозначение триодов: а - с катодной сеткой; б - с экранной сеткой

К многосеточным лампам относятся: тетроды - с двумя сетками, пентоды - с тремя сетками, гексоды - с четырьмя сетками, гептоды - с пятью сетками и октоды - с шестью сетками. Наибольшее распространение получили тетроды и пентоды.

У тетродов одна из сеток называется управляющей и имеет отрицательное напряжение. Другая сетка располагается либо между управляющей и анодом или между управляющей и катодом. В первом случае такая сетка называется экранирующей, во втором - катодной.

Условное графическое обозначение электровакуумных тетродов приведено на рис. 3.

В тетродах с экранирующей сеткой ток катода распределяется между экранирующей сеткой и анодом. Основным преимуществом такого тетрода является снижение емкости между анодом и управляющей сеткой. Экранирующая сетка снижает эту емкость до долей пикофарады и уменьшает проницаемость анода.

Однако близость экранирующей сетки к аноду имеет недостаток, заключающийся в том, что при низком напряжении на аноде проявляется динатронный эффект - снижение тока анода за счет вторичной эмиссии (провал на анодной характеристике (рис. 3.4)). При этом вторичные электроны не возвращаются обратно на катод, а захватываются экранирующей сеткой.

Пентодом называют лампу с тремя сетками. Внедрение третьей сетки обусловлено необходимостью устранения динатронного эффекта, свойственного тетроду. Эта сетка называется защитной (или антидинатронной) и располагается между экранирующей сеткой и анодом. Напряжение на этой сетке обычно делают равным напряжению на катоде, для этого иногда ее соединяют с катодом внутри колбы. Устранение динатронного эффекта получается благодаря потенциальному барьеру, образовавшемуся в пространстве между анодом и экранирующей сеткой. Вместе с тем этот потенциальный барьер не представляет значительного препятствия для электронов, движущихся к аноду с большой скоростью.

2. По конструктивным особенностям цепи накала электронные лампы делятся на лампы с катодами прямого накала и лампы с катодами косвенного накала.

Катод прямого накала представляет собой металлическую нить из материала с большим сопротивлением (вольфрама или тантала), по которой проходит ток накала. Такой катод отличается малыми тепловыми потерями, простотой устройства и малой тепловой инерцией. Недостатком такого катода является то, что его необходимо питать постоянным током. При питании переменным током частотой 50 Гц ток эмиссии изменяется с удвоенной частотой питающего напряжения, что создает нежелательный шумовой низкочастотный фон.

Катод косвенного накала представляет трубку, внутри которой размещена нить накала. Нить накала изолирована от катода. В результате практически сглаживаются пульсации температуры и тока эмиссии при питании накала переменным током.

  • 3. По назначению лампы делятся на приемо-услительные, генераторные, частотно-преобразовательные, детекторные, измерительные и так далее.
  • 4. В зависимости от диапазона рабочих частот различают лампы низких (от 1 - 30 МГц), высоких (от 30 до 600 МГц) и сверхвысоких (свыше 600 МГц) частот.
  • 5. По виду электронной эмиссии различают лампы с термоэлектронной , вторичной и фотоэлектронной эмиссией.

Электронная эмиссия необходима для создания внутри электровакуумного прибора между электродами потока электронов.

Под термоэлектронной эмиссией понимают процесс выхода электронов из твердых или жидких тел в вакуум или газ.

Под вторичной электронной эмиссией понимается испускание электронов телом вследствие бомбардирования его электронами, испускаемым другим телом.

Под фотоэлектронной эмиссией понимается испускание электронов телом, находящимся в потоке лучистой энергии.

2.1.2 Характеристика и параметры

Характеристики лампы выражают зависимость токов от напряжений в различных ее цепях. Свойства электронных ламп оценивают по анодным или анодно-сеточным статическим характеристикам.

Анодной статической характеристикой называется графически выраженная зависимость анодного тока I a от напряжения на аноде U a . Зависимость I a = f (U a ) снимают для нескольких неизменных значений напряжения U с (исключение составляют анодные характеристики диода). Внешний вид анодной характеристики определяется количеством электродов в лампе (рисунок 4).



Рис. 4. Анодные характеристики электронных ламп: а - диода; б - триода; в - тетрода; г - пентода

Анодно-сеточными статическими характеристиками называют графически выраженные зависимости анодного тока I а от напряжения на сетке U c при фиксированных значениях анодного напряжения U а . Также как и для анодных характеристик зависимости I а = f(U с ) снимают для нескольких неизменных значений анодного напряжения U а. (рисунок 5).

Чем больше анодное напряжение U а , тем выше и левее расположены анодно-сеточные характеристики I а = f(U с ) . Объясняется это тем, что при более высоком анодном напряжении на сетку необходимо подавать большее отрицательное напряжение, чтобы результирующее электрическое поле в пространстве между катодом и сеткой осталось неизменным по величине.

К основным электрическим параметрам электровакуумного диода относятся следующие: электровакуумный газоразрядный прибор

1. Внутреннее сопротивление постоянному току :

где U А - постоянная составляющая анодного напряжения, I А - постоянная составляющая анодного тока.


Рис. 5. Анодно-сеточные характеристики электронных ламп: а - триода; б - пентода

2. Внутреннее дифференциальное сопротивление R д диода представляет собой сопротивление пространства между анодом и катодом для переменного тока. Оно является величиной, обратной крутизне и определяется с помощью анодных статических характеристик (рис. 3.4, а):

и обычно составляет сотни, а иногда и десятки Ом.

Обычно сопротивление R 0 больше R д .

3. Крутизна S показывает, как изменится анодный ток при изменении анодного напряжения и выражается следующей зависимостью:

  • 4. Напряжение накала U н - напряжение, подаваемое на подогреватель. Эта величина является паспортной. При недонакале лампы уменьшается температура катода, а следовательно, и ток эмиссии. При повышении напряжения накала резко U н резко сокращается срок службы катода, поэтому не допускается отклонение напряжения накала больше чем на 10% от номинального.
  • 5. Ток эмиссии I е - максимальный ток, который может быть получен в результате эмиссии электронов термокатодом. Он представляется суммарным зарядом электронов, покинувших термокатод за одну секунду.
  • 6. Допустимое обратное напряжение диода U обр max - максимальное отрицательное напряжение на аноде, которое может выдержать диод без нарушения свойств односторонней проводимости.

Параметры некоторых серийных электровакуумных диодов приведены в табл. 1.

Таблица 1. Основные параметры серийных электровакуумных диодов

К основным электрическим параметрам электронных ламп состоящих из трех и более электродов относятся:

1. Внутреннее (выходное) сопротивление лампы представляет собой сопротивление про межутка анод - катод лампы для переменной составляющей анодного тока и определяется по формуле:

где U а - изменение напряжения на аноде, В; I а - изменение анодного тока, мА. Для электровакуумных диодов внутреннее сопротивление носит название сопротивления переменному току и определяется как:

2. Крутизна характеристики S показывает, на сколько миллиампер изменится анодный ток лампы при изменении напряжения на управляющей сетке на 1 В при постоянных напряжениях на аноде и остальных сетках:

где U с - изменение сеточного напряжения, В.

Следует отметить, что чем больше крутизна, тем сильнее управляющее действие сетки и тем выше усиление лампы можно получить при прочих равных условиях.

3. Статический коэффициент усиления показывает, во сколько раз изменение напряжения на первой сетке сильнее действует на анодный ток, чем изменение анодного напряжения. Коэффициент усиления определяется отношением изменения анодного напряжения к изменению сеточного напряжения, одинаково воздействующих на анодный ток:

4. Мощность, рассеиваемая на аноде, определяется по формуле:

5. Выходная мощность Рвых характеризует полезную мощность, отдаваемую лампой во внешнюю цепь.

Параметры некоторых серийных триодов, тетродов и пентодов приведены в табл. 2.

Таблица 2. Основные параметры серийных триодов, тетродов и пентодов

Своим появлением современные электровакуумные приборы обязаны американскому изобретателю Томасу Эдисону. Именно он разработал первый удачный способ освещения, используя для этого электрическую лампочку.

История создания лампы

В настоящее время с трудом верится, что электричество существовало далеко не во все исторические периоды. Первые лампочки накаливания появились только в конце девятнадцатого века. Эдисону удалось разработать модель лампочки, в которой располагались угольные, платиновые, бамбуковые нити. Именно этого ученого по праву называют «отцом» современной Им была упрощена схема лампочки, существенно снижена стоимость продукции. В результате на улицах появилось не газовое, а электрическое освещение, а новые осветительные приборы стали именовать лампами Эдисона. Томас на протяжении длительного времени работал над усовершенствованием своего изобретения, в итоге применение свечей стало нерентабельным мероприятием.

Принцип работы

Какое устройство имеют лампочки накаливания Эдисона? В каждом приборе есть тело накала, стеклянная колба, основной контакт, электроды, цоколь. У каждого из них есть свое функциональное предназначение.

Суть работы данного устройства заключается в следующем. При сильном нагревании тела накала потоком заряженных частиц, происходит превращение электрической энергии в световой вид.

Для того чтобы излучение мог воспринимать человеческий глаз, необходимо достичь температуры не меньше 580 градусов.

Среди металлов максимальной температурой плавления обладает вольфрам, поэтому именно из него изготавливается тело накала. Для уменьшения объема проволоку стали располагать в виде спирали.

Несмотря на высокую химическую стойкость вольфрама, для его максимальной защиты от процесса коррозии тело накала размещается в герметичном стеклянном сосуде, из которого предварительно выкачан воздух. Вместо него в колбу закачивается инертный газ, который не дает вольфрамовой проволоке вступать в реакции окисления. Чаще всего в качестве инертного газа применяется аргон, иногда используют азот или криптон.

Суть изобретения Эдисона в том, что испарению, происходящему при длительном нагревании металла, препятствует давление, создаваемое инертным газом.

Особенности лампы

Существует довольно много разных ламп, предназначенных для освещения большой площади. Особенность изобретения Эдисона в возможности корректировать мощность данного прибора с учетом освещаемой площади.

Производители предлагают разные виды ламп, отличающихся по сроку службы, размерам, мощности. Остановимся на некоторых видах этих электрических приборов.

Самые распространенные вакуумные лампы - ЛОН. Они в полной мере соответствуют гигиеническим требованиям, а средний срок их службы составляет 1000 часов.

Среди недостатков ламп общего назначения выделим низкий Примерно 5 процентов электрической энергии переходит в световую, остальные выделяются в виде тепла.

Прожекторные лампы

Они имеют достаточно высокую мощность, предназначены для освещения больших площадей. Электровакуумные приборы подразделяют на три группы:

  • кинопроекционные;
  • маячные;
  • общего назначения.

Прожекторный световой источник отличается длиной тела накала, у него более компактные размеры, что позволяет усиливать габаритную яркость, улучшать фокусировку потока света.

Зеркальные электровакуумные приборы имеют светоотражающий алюминиевый слой, иную конструкцию колбы.

Та ее часть, которая предназначена для проведения света, изготовлена из матового стекла. Это позволяет делать свет мягким, снижать контрастные тени от различных предметов. Такие электровакуумные приборы применяют для интерьерного освещения.

Внутри галогенной колбы находятся соединений брома либо йода. Благодаря их способности выдерживать температуры до 3000 К, эксплуатационный срок ламп составляет около 2000 часов. Но и в этом источнике существуют свои недостатки, например, галогенная лампа, имеет невысокое электрическое сопротивление при остывании.

Основные параметры

В лампе накаливания Эдисона вольфрамовая нить располагается в разной форме. Для стабильной работы такого прибора необходимо напряжение 220 В. В среднем срок ее эксплуатации составляет от 3000 до 3500 часов. Учитывая, что цветовая температура 2700 К, лампа обеспечивает белый теплый либо желтый спектр. В настоящее время предлагаются лампы с разными размерами Е27). При желании можно подобрать в потолочную люстру либо настенный осветительный прибор лампу в виде шпильки, елочки, спирали.

Изобретение Эдисона поделено по числу вольфрамовых нитей на отдельные классы. От этого показателя напрямую зависит стоимость осветительного прибора, его мощность, эксплуатационный срок.

Принцип работы ЭВЛ

Термоэлектронная эмиссия заключается в испускании нагретым телом накала электронов в вакуум или инертную среду, создаваемую внутри колбы. Для управления потоком электронов используется магнитное либо электрическое поле.

Термоэлектронная эмиссия позволяет практически использовать положительные качества электронного потока - генерировать, усиливать электрические колебания различной частоты.

Особенности радиоламп

Электровакуумный диод - основа радиотехники. В конструкции лампы есть два электрода (катод и анод), сетка. Катод обеспечивает эмиссию, для этого слой вольфрама покрывается барием или торием. Анод выполняется в виде пластины из никеля, молибдена, графита. Сетка является разделителем между электродами. При нагревании рабочего тела из движущихся частиц создается мощный электрический ток в вакууме. Электровакуумные приборы данного вида составляют основу радиотехники. Во второй половине прошлого века электровакуумные лампы использовались в разнообразных сферах технической, радиоэлектронной промышленности.

Без них невозможно было изготовить радиоприемники, телевизоры, специальное оборудование, вычислительные машины.

Сферы применения

По мере развития точного приборостроения, радиоэлектроники, эти лампы потеряли свою актуальность, перестали применяться в больших масштабах.

Но и в настоящее время есть такие промышленные направления, в которых требуются ЭВЛ, ведь только вакуумная лампа способна обеспечить работоспособность приборов по заданным параметрам, в определенной среде.

Особый интерес ЭВЛ представляют для военно-промышленного комплекса, поскольку именно вакуумные лампы отличаются повышенной стойкостью к электромагнитным импульсам.

В одном военном аппарате может содержаться до сотни ЭВЛ. Большая часть полупроводниковых материалов, РЭК не может функционировать при повышенной радиации, а также в условиях естественного вакуума (в космосе).

ЭВЛ способствуют повышению надежности и долговечности спутников и космических ракет.

Заключение

В электровакуумных приборах, которые позволяют генерировать, усиливать, преобразовывать электромагнитную энергию, рабочее пространство полностью освобождено от воздуха, отгорожено от атмосферы непроницаемой оболочкой.

Открытие термоэлектронной эмиссии способствовало созданию простой двухэлектродной лампы, названной вакуумным диодом.

При его включении в электрическую цепь внутри прибора появляется ток. При изменении полярности напряжения он исчезает, причем независимо от того, насколько нагревается катод. При поддержании постоянного значения температуры нагретого катода удалось установить прямую зависимость между анодным напряжением и силой тока. Полученные результаты стали применяться при разработке электронных вакуумных приборов.

Например, триод представляет собой электронную лампу, имеющую три электрода: анод, термоэлектронный катод, управляющую сетку.

Именно триоды стали первыми устройствами, применяемыми для усиления электрических сигналов в начале прошлого века. В настоящее время на смену триодам пришли полупроводниковые транзисторы. Вакуумные триоды применяются только в тех областях, где необходимо преобразование мощных сигналов при незначительном количестве активных компонентов, а массой и габаритами можно пренебречь.

Мощные радиолампы сравнимы с транзисторами по коэффициенту полезного действия, надежности, но срок их службы значительно меньше. У маломощных триодов большая часть накала уходит на потребляемую каскадную мощность, иногда ее величина доходит до 50%.

Тетроды представляют собой электронную двухсеточную лампу, которая предназначается для увеличения мощности и напряжения электрических сигналов. Эти устройства имеют больший коэффициент усиления в сравнении с триодом. Подобные конструкционные особенности позволяют применять тетроды для усиления низких частот в телевизорах, приемниках, иной радиоаппаратуре.

Потребители активно используют лампы накаливания, в которых телом накала является вольфрамовая спираль или проволока. Эти приборы имеют мощность от 25 до 100 Вт, их эксплуатационный срок составляет 2500-3000 часов. Производители предлагают лампы с разным цоколем, формой, размерами, поэтому можно подобрать вариант лампы с учетом особенностей осветительного прибора, площади комнаты.

Loading...Loading...